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Study Design

 Large cohort population based design (cases with matched controls 

or quantitative phenotypes and complex traits)

- Assumes: independent and well matched samples

- Can interrogate complex traits

 Small families (trios, quads, small extended pedigrees)

- Can only analyze a single family at a time, looking for de Novo, recessive or 

compound het variants unique to an affected sample in a single family

- Looking for highly penetrant variants



What If????

 What if we have:

- Known population structure

- Cannot guarantee independence between samples

- Controls were borrowed from a different study

- Multiple families with affected offspring all exhibiting the same phenotype

- Multiple large extended pedigrees of unknown structure



Just Add Random Effects!

 Why can’t we just add random effects to our regression models for 

our rare-variant burden testing algorithms?

 Existing mixed model algorithms assume a linear model

 Kernel-based adaptive clustering (KBAC) uses a logistic regression 

model

 Hmm what to do….?



WARNING!

What is about to follow are formulas and statistics, specifically matrix 

algebra…

But don’t worry we’ll end the webcast with a presentation of some 

preliminary results! So hang in there!



But first…. 

The dataset we have chosen for today is the 1000 Genomes Pilot 3 

Exons dataset with a simulated phenotype.



Relatedness of samples



Why Mixed Models + KBAC?

 OK Mixed Models makes sense, but why KBAC?

 KBAC was chosen as our proof of concept rare-variant burden test 

for complex traits

 KBAC uses a score test which is trivial to calculate once you 

compute the reduced model

 Mixed models can be added to other burden and kernel tests using 

the same principles



What is KBAC?

 KBAC = Kernel-based Adaptive 
Clustering

 Catalogs and counts multi-marker 
genotypes based on variant data

 Assumes the data has been filtered to 
only rare variants

 Performs a special case/control test 
based on the counts of variants per 
region (aka gene)

 Test is weighted based on how often each 
genotype is expected to occur according 
to the null hypothesis

 Genotypes with higher sample risks are 
given higher weights

 One-sided test primarily, which means it 
detects higher sample risks



Pictorial Overview of Theory



Filter Common/Known SNPs



Filter by Gene Membership



Rare Sequence Variants



KBAC Statistic

 𝐾𝐵𝐴𝐶1 =  𝑖=1
𝑘 𝑁𝑖

𝐴

𝑁𝐴 −
𝑁𝑖
𝑈

𝑁𝑈 𝐾𝑖
0  𝑅𝑖

 Where the weight is defined as:

𝑤𝑖 = 𝐾𝑖
0  𝑅𝑖 =  

0

 𝑅𝑖

𝑘𝑖
0 𝑟 𝑑𝑟

The weight can be calculated as a:

- Hyper-geometric kernel

- Marginal binomial kernel

- Asymptotic normal kernel



Determining the KBAC p-value

 Monte-Carlo Method is used as an approximation for finding the p-

value

 The number of cases 𝑛𝑖
𝐴for each genotype 𝐺𝑖 approximates a 

binomial distribution 𝑛𝑖
𝐴~ 𝐵𝑖𝑛𝑜𝑚 𝑛𝑖 ,

𝑛𝐴

𝑛

 The case status is permuted among all samples. The covariates and 

genotypes are held fixed.



Logistic Mixed Model Equation

log
𝑃 𝑌𝑗 = 1 | 𝑋𝑗 , 𝑋𝑓𝑗𝑙 , 𝑢𝑗

1 − 𝑃 𝑌𝑗 = 1 | 𝑋𝑗 , 𝑋𝑓𝑗𝑙 , 𝑢𝑗
= 𝛽0 + 𝛽1𝑋𝑗 +  

𝑙

𝛽𝑓𝑙𝑋𝑓𝑗𝑙 + 𝑢𝑗

Null hypothesis: 𝐻0: 𝛽1 = 0

The score statistic to test the null of the independence of the model 

from 𝑋𝑗 is:

𝑈 =  𝑗𝑋𝑗 𝑌𝑗 − 𝜇𝑗 , where

𝜇𝑗 = ℎ 𝜂𝑗 =
𝑒
𝜂𝑗

1+𝑒
𝜂𝑗

, and 

𝜂𝑗 = 𝛽0 +  𝑙 𝛽𝑓𝑙𝑋𝑓𝑗𝑙 + 𝑢𝑗, and 

𝑢𝑗 is the random effect for the  𝑗^(𝑡ℎ) sample.



Logistic (Reduced) Mixed Model Equation

log
𝑃 𝑌𝑗 = 1 | 𝑋𝑓𝑗𝑙 , 𝑢𝑗

1 − 𝑃 𝑌𝑗 = 1 | 𝑋𝑓𝑗𝑙 , 𝑢𝑗
= 𝛽0 +  

𝑙

𝛽𝑓𝑙𝑋𝑓𝑗𝑙 + 𝑢𝑗

Which can be rewritten as:

𝐸 𝑌 𝑢 = ℎ 𝑋𝑓𝛽 + 𝑢 = ℎ 𝜂 = 𝜇

And 

𝑉𝑎𝑟 𝑌 𝑢 = 𝐴 = 𝐴  1 2𝐴  1 2

Where 𝐴 is the variance of the binomial distribution itself, where

 
𝐴𝑗𝑗 = 𝜇𝑗 1 − 𝜇𝑗 𝑓𝑜𝑟 𝑗 = 1. . 𝑛

𝐴𝑖𝑗 = 0 𝑓𝑜𝑟 𝑖 ≠ 𝑗

And the linear predictor for the model is 𝜂 = 𝑋𝛽 + 𝑢

While ℎ ∎ is the inverse link function for the model



Solving the Logistic Mixed Model

Iterate between creating a linear pseudo-model and solving for the 

pseudo-model’s coefficients

ℎ 𝜂  = ℎ  𝜂 +  Δ𝑋 𝛽 −  𝛽 +  Δ(𝑢 −  𝑢)

Where 

 Δ =
𝜕ℎ 𝜂

𝜕𝜂  𝛽, 𝑢

Rearranging yields
 Δ−1 𝜇 − ℎ  𝜂 + 𝑋  𝛽 +  𝑢  = 𝑋𝛽 + 𝑢

The left side is the expected value, conditional on 𝑢, of

𝑃 ≡  Δ−1 𝑌 − ℎ  𝜂 + 𝑋  𝛽 +  𝑢

The variance of 𝑃 given 𝑢 is 

𝑉𝑎𝑟 𝑃 𝑢 =  Δ−1  𝐴  1 2  𝐴  1 2 Δ−1

Where
 𝐴𝑗𝑗 =  𝜇𝑗 1 −  𝜇𝑗 ,  𝐴𝑖𝑗 = 0 (𝑓𝑜𝑟 𝑖 ≠ 𝑗)



Transform Pseudo-Model to use EMMA

Pseudo-model: 𝑃 = 𝑋𝛽 + 𝑢 + 𝜖 and 𝑉𝑎𝑟 𝜖 = 𝑉𝑎𝑟 𝑃 𝑢

NOTE: As an alternative, rather than using the prediction of 𝑢 from the pseudo-model, 

we can use the expected value of 𝑢, which is zero

Want to solve using EMMA (Kang 2008)

Find 𝑇 such that 𝑉𝑎𝑟 𝑇𝜖 = 𝐼

So that we can write

𝑇𝑃 = 𝑇𝑋𝛽 + 𝑇𝑢 + 𝑇𝜖

And use EMMA to solve the mixed model

𝑇𝑃 = 𝑇𝑋𝛽 + 𝑇𝑢 + 𝜖∗

Where the variance of 𝜖∗is proportional to 𝐼

It can be shown that this is solved by letting

𝑇 =  𝐴 −  1 2 Δ



Summary of the Algorithm

First pick starting values of  𝛽 and  𝑢, such as all zeros. Repeat the following 

steps until the changes in  𝛽 and  𝑢 are sufficiently small:

1. Find  𝜂 and  𝜇 from the original linear predictor equation and the definition 

of ℎ ∎

2. Find the (diagonal)  Δ matrix

3. Find the pseudo-model 𝑃

4. Find the (diagonal) matrix 𝑇

5. Solve the following for new values of  𝛽 and  𝑢 using EMMA:

𝑇𝑃 = 𝑇𝑋𝛽 + 𝑇𝑢

NOTE: The alternative method modifies Step 5 to use EMMA to determine the variance 

components and to find a new value for  𝛽, while leaving the value of  𝑢 at its expected 

value of zero.

After convergence, the alternative method predicts the values of 𝑢, and 

computes the final values of 𝜂 and 𝜇 from this prediction



Computing the Kinship Matrix



KBAC and MM-KBAC SVS Interface



Applying MMKBAC to a real study



KBAC vs MM-KBAC QQ Plots

 𝜆 = 0.757  𝜆 = 1.018

KBAC w Pop. Covariates:  𝜆 = 0.902



Signal at PSRC1



Signal at HIRA



Conclusion

 This will method will be added into SVS in the near future…

In the meantime…

 Like to try it out on your dataset – ask us to be part of our early-

access program!

 We have submitted an abstract to ASHG, hope to see you there!



Announcements

 Webcast recording and slides will be up on our website tomorrow.

 T-shirt Design Contest! Details at www.goldenhelix.com/events/t-

shirtcontest.html

 Next scheduled webcast is July 22nd, but Heather Huson of Cornell 

University.

http://www.goldenhelix.com/events/t-shirtcontest.html
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