Two Clinical Workflows – From Unfiltered Variants to a Clinical Report

November 04, 2015

Greta Linse-Peterson, Director of Services Ashley Hintz, Field Application Scientist

Questions during the presentation

Use the Questions pane in your GoToWebinar window

Golden Helix is a global bioinformatics company founded in 1998.

We are cited in over 900 peer-reviewed publications

Over 200 organizations world wide, and thousands of users, trust our software.

When you choose a Golden Helix solution, you get more than just software

- REPUTATION
- TRUST
- EXPERIENCE

- INDUSTRY FOCUS
- THOUGHT LEADERSHIP
- COMMUNITY

- TRAINING
- SUPPORT
- RESPONSIVENESS

- TRANSPARENCY
- INNOVATION and SPEED
- CUSTOMIZATIONS

Outline

Golden Helix

- VarSeq ships with the following support for cancer gene panels:
 - An example project
 - A project template
 - A report template
- Numerous targeted panels are available in the data repository for coverage statistics and filtering

GOLDEN HELIX

- Variant annotation, filtering and interpretation
- Repeatable workflows
- Rich visualizations with GenomeBrowse built-in
- Powerful GUI and command-line interfaces

Data Curation of Annotation Sources

VarSeq is backed by an extensive list of curated data sources

- 1kG Phase3 Variant
 dbSNP Frequencies
 - ExAC

NCBI

- ClinVar, NCBI
- ClinVitae, Invitae
- COSMIC

GOLDEN HELX

- dbNSFP Functional Predictions
- Supercentenarian 17 Variant Frequencies

- RefSeq Genes,

- Your workflows lock down specific versions
- MedGenome OncoMD provides curated drug targeted mutations for Cancer, supporting clinical trials and functional evidence.
- OMIM Genes, Phenotypes and Variants

Select Data Source	l		х
elect tracks to use as annotation sources against the imported variant set.			
			_
Locations Dublic Annotations			Ģ
Filter: * Homo sapiens (Human), GRCh37	g1k (Feb	2 🔻 🔽 Lat	est
Name	Size	Date	
ClinVar 2015-05-04, NCBI	4.6M	2015-05-12	
ClinVitae 2014-02-09, Invitae	2.5M	2014-02-11	
COSMIC Mutations Left Aligned 71 v2, GHI	59M	2015-03-13	
🔲 🏢 dbNSFP Functional Predictions 2.9, GHI	435M	2015-04-14	
dbNSFP Functional Predictions and Scores 2.9, GHI	6.2G	2015-04-13	
🔲 🏢 dbscSNV Splice Altering Predictions 2014-11-09, GHI	220M	2014-09-28	
ULSC dbSNP 137, UCSC	857M	2012-12-10	
□ dbSNP 142∨2, NCBI	2.1G	2015-04-20	
UCSC dbSNP Common 137, UCSC	217M	2012-12-10	
🔲 🏢 dbSNP Common 141, NCBI	554M	2014-09-18	
UCSC dbSNP Flagged 137, UCSC	911K	2012-12-10	Ξ
U III dbSNP Flagged 141, NCBI	243K	2014-09-17	
UCSC dbSNP Multiple Loci 137, UCSC	53M	2012-12-10	
ExAC Variant Frequencies 0.3, BROAD	756M	2015-04-07	
ExAC VEP Annotations 0.3, BROAD	827M	2015-04-22	
NHLBI ESP6500SI-V2-SSA137 Exomes Variant Frequencies 0.0.30, Gl	HI 86M	2015-04-22	
PolyPhen2 dbSNP131, UCSC	3.2M	2011-03-28	
SIFT Prediction for SNVs 2011-01-10, JCVI	254M	2011-01-10	
Supercentenarian 17 Variant Frequencies, GHI	112M	2015-03-05	-
<		۰.	
▼ Information showing (23/378), 0	selected	(0 bytes) Cle	ear
ExAC VEP Annotations 0.3, BROAD			-
Description			
The Exome Aggregation Consortium (ExAC) aggregates and summarize sequencing data from a variety of large-scale sequencing projects. The	es exome data set	e spans	
Convert Export Download Select C	ancel	Help	

Custom Reports

Genetic Variants

Gene Zygosity Va	riant
------------------	-------

BRAF	Heterozygous	NM_004333.4:c.1799T>A(NP_004324.2:p.Val600Glu)
------	--------------	--

Exon Pathogenicity 15 Pathogenic

Interpretation Summary

Although BRAF is most commonly associated with malignant melanoma, Lee et al. (2004) showed that BRAF is occasionally mutated in leukemias. As the patient presented with acute leukemia and a mutation associated with leukemia was found in the BRAF gene, we recommend treatment take advantage of known drugs targeting somatic mutations in this gene.

Recommendations

The drug Tafinlar + Mekinist has in other studies shown to be effective in somatic mutations in the BRAF gene.

Individual Variant Interpretations

Results

Positive: Mutations with an established somatic link detected

Affected Genes

ABL1	ASXL1	ATRX	BCOR	BCOR1	BRAF	CALR	CBL	CBLB	CBLC	CDKN2A
(0)	(0)	(0)	(0)	(0)	(1)	(0)	(0)	(0)	(0)	(0)
CEBPA	CSF3R	CUX1	DNMT3A	ETV6/TEL	EZH2	FBXW7	FLT3	GATA1	GATA2	GNAS
(0)	(0)	(1)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
HRAS	IDH1	1DH2	IKZF1	JAK2	JAK3	KDM6A	<i>КІТ</i>	KRAS	MLL	MPL
(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
MYD88	NOTCH1	NPM1	NRAS	PDGFRA	PHF6	PTEN	PTPN11	RAD21	RUNX1	SETBP1
(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
SF3B1	SMC1A	<u>SMC</u> 3	SRSF2	STAG2	тет2	TP53	U2AF1	WT1	ZRSR2	
(0)	(0)	(0)	(0)	(0)	(3)	(3)	(0)	(0)	(0)	

Genetic Variants

Gene

BRAF

Zygosity	Variant	Exon	Pathogenicity	
Heterozygous	NM 004333.4 r. 1799T>A/NP 004324.2 r. Val600Gku)	15	Pathogenic	

Interpretation Summary

Although BRAF is most commonly associated with malignant melanoma, Lee et al. (2004) showed that BRAF is occasionally mutated in leukemias. As the patient presented with acute leukemia and a mutation associated with leukemia was found in the BRAF gene, we recommend treatment take advantage of known drugs targeting somatic mutations in this gene.

Recommendations

The recommended drugs targeting the BRAF mutation are included in the table below as well as 10 of the clinical trials currently underway.

OncoMD Drug Summary

Illumina TruSight Myeloid Sequencing Panel

- Three replicates at different percentages of Horizon Dx known somatic mutations with NA12877 (increase in dilution from 10%, 25% and 50%)
- Comprehensive coverage of 54 genes designed to target exons of key tumor suppressor genes and frequently cited oncogenes mutated frequently in myeloid malignancies
- BAM and VCF files for each replicate are available
- Targeted regions are available in a BED file
- High Coverage, average read depth over the targeted regions
 - For the three replicate the average read depth is over 4000 reads

Outline

Golden Helix

- VarSeq currently ships with default workflows for Trio Analysis:
 - De Novo Candidate
 - Dominant Heterozygous
 - Compound Heterozygous
 - Recessive Homozygous
 - X-Linked
 - Known Rare Pathogenic

Sample Data for Family Trio

- Proband NA19240 from International HapMap Project Yoruba in Ibadan, Nigeria
 - BAM files from 1000 Genomes Phase 3 Illumina Exome Alignment
 - We injected a variant in the proband's BAM file
 - Used SAM tools for variant calling.
- BAM and VCF files for each sample are available

Batch Analysis Workflow

Define a Workflow that is Repeated for "Batches" of Samples

Design and Repeat

- Steps in RED are done once when designing a new workflow to be tuned to the upstream pipeline and test thresholds
- Steps in BLUE are done for each sample or set of samples that should repeat the workflow
- Steps in BLUE can be automated with
 VSPIPELINE

Produce Automated "Deliverables"

- Filtered and annotated variant lists
- Exported to Excel, VCF, Text
- VarSeq Projects (openable by VarSeq, VarSeq Viewer)

Deploy a Project Template

- Support validation (like CAP/CLIA)
- All steps logged

Integrated

- Run as part of pipeline that produces BAM/VCF files.

📜 1. /home/mobaxterm 🛛 🗶 2. linserverdev (grudy) 🛛 🕀
grudy@LinServerDev:~/scratch\$ vspipeline -c batch file=panel_workflow.vsbatch
Loading
Importing Variants
[0%] Stalling
[0%] Miniting new file
[0%] Writing new file
[0%] Writing new file
[0%] Writing new file
[0%] Writing new file
[0%] Writing new file
[0%] Writing new file
[0%] Writing new file
[0%] Writing new file
[0%] Writing new file
[0%] Writing new file
[0%] Writing new file
[0%] Writing new file
[0%] Writing new file
[0%] Writing new file
[0%] Writing new file
[0%] Writing new file
[0%] Writing new file
[08] Writing new file
[0%] Writing new file
[15%] Writing new file - About 10 Seconds remaining
[16%] Writing new file - About 10 Seconds remaining
[22%] Writing new file - About 10 Seconds remaining
[27%] Writing new file - About 10 Seconds remaining
[29%] Writing new file - About 10 Seconds remaining
[34%] Writing new file - About 10 Seconds remaining
[35%] Writing new file - About 10 Seconds remaining
[40%] Writing new file - Less than 10 Seconds remaining
[43%] Writing new file - Less than 10 Seconds remaining
[45%] Writing new file - Less than 10 Seconds remaining

Questions during the presentation

Use the Questions pane in your GoToWebinar window

