

Knowing Your NGS Upstream: Alignment and Variants

March 27, 2013

Gabe Rudy, Vice President of Product Development

Questions during the presentation

Use the Questions pane in your GoToWebinar window

 Questi 	ons	[2]
⊠ Show	Answered Questions	
X	Asker	
Ask Ques	tions Here	^
		~

Goals

What I Assume About You

- Some experience with NGS technology
- Not a command line bioinformatician by day;
 not afraid of technical terms

What You Will Learn

- A healthy skepticism when looking at NGS data
- What to expect/not expect from core labs or upstream sequencing service providers
- Reading pile-ups in a genome browser and spotting high quality vs sketchy variants

What You Won't Learn

- Interpreting biological significance of variants
- One true way to do secondary analysis

I won't do this... hopefully!

My Background

Golden Helix

- Founded in 1998
- Genetic association software
- Analytic services
- Hundreds of users worldwide
- Over 700 customer citations in scientific journals

Products I Build with My Team

- SNP & Variation Suite (SVS)
 - SNP, CNV, NGS tertiary analysis
 - Import and deal with all flavors of upstream data

GenomeBrowse

Visualization of everything with genomic coordinates.
 All standardized file formats.

- RNA-Seq Pipeline

- Expression profiling bioinformatics

Agenda

- 1 Background and Definitions
- Why You Should Care About Your Upstream?
- 3 A Drink from the Bioinformatics Firehose
- 4 Service Provider Deliverables: CEPH Trio Example
- 5 Applications That Require Special Upstream Analysis

Agenda

- 1 Background and Definitions
- Why You Should Care About Your Upstream?
- 3 A Drink from the Bioinformatics Firehose
- 4 Service Provider Deliverables: CEPH Trio Example
- 5 Applications That Require Special Upstream Analysis

NGS Analysis

Primary Analysis

- Analysis of hardware generated data, on-machine real-time stats.
- Production of sequence reads and quality scores

Secondary Analysis

- QA and clipping/filtering reads
- Alignment/Assembly of reads
- Recalibrating, de-duplication, variant calling on aligned reads

Tertiary Analysis

"Sense Making"

- QA and filtering of variant calls
- Annotation and filtering of variants
- Multi-sample integration
- Visualization of variants in genomic context
- Experiment-specific inheritance/population analysis

Primary Analysis: I'd like some AGCT's please

Standardized on producing FASTQ

- AGCT or N
- Quality scores
- Pair of files for paired end

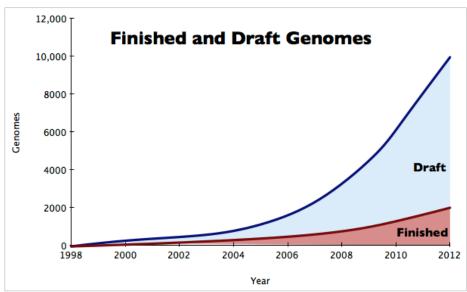
Happens on machine for desktop sequencers

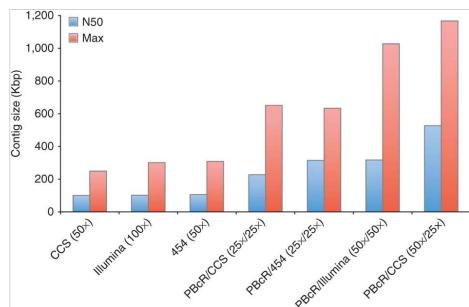
- Ion Torrent processing microwell detectors
- MiSeq doing optic processing of flowcell
- PacBio processing optics of ZMW

HiSeq 2000/2500

- Requires off-machine base-calling
- Can "call bases" with Illumina software on raw data collected tile by tile

Assembly vs Alignment




De Novo Genome Assembly

- Very difficult for large genomes to get to "finished" genome quality (traditionally done with Sanger).
- Short reads will get you to contigs sizes of ~10-100Kb range.
- Need long reads (PacBio) or restriction maps optical mapping (OpGen) to make chromosomal sized contigs

Alignment

- Aligning to finished (or draft) genomes that is considered "reference"
- Allows for some differences, but not too many between your reads and the reference

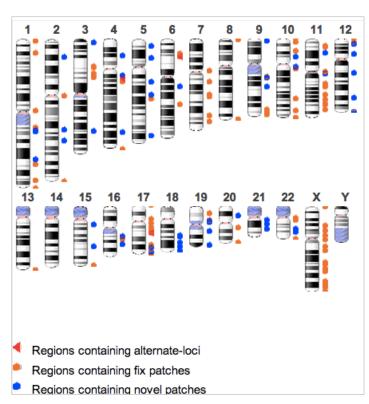
The Human Reference Sequence

Genome Reference Consortium (GRCh37)

- Feb 2009, previous was NCBI36 March 2006
- 9 alt loci and 187 patches (11 patch releases)

Supercontigs: Large unplaced contigs

- Some localized to chr level and some unknown

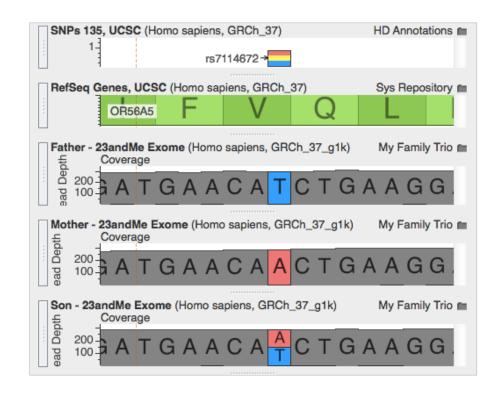

Does not include a Mitochondrial reference

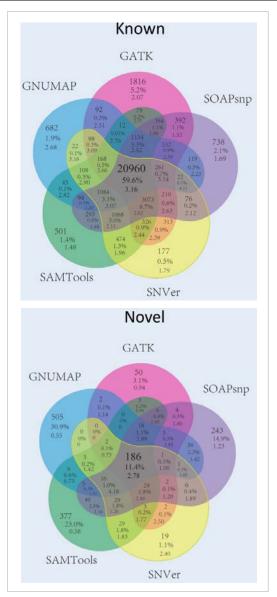
- UCSC hg19 includes older NCBI 36 MT
- 1000 genomes project using revised Cambridge Reference Sequence (rCRS)
- Provide "g1k" reference: includes rCRS, Human herpesvirus 4 type 1, supercontigs and "decoy" sequence

v38 genome coming this summer:

- Incorporate all patches into the reference
- Some allele fixes to have reference match major

Example Patch


GenBank ID	RefSeq ID	Sequence Type	Length	Alignment mismatch	Unique sequence	Show in Viewer	
GL339450.1	NW_003315925.1	Fix	330,164	500	10,751		
						Show region	
chr9 (NC_00000	<mark>9.11</mark>):136,049,442-13	6,369,192					
DISC NC_000009.11:	136M136M (80Kbp) -	Find on Sequence:		→ ← → - = = = = = = = = = = = = = = = = = =	+ AT6	× Tool:	s 🕶 🏟 Configure ಿ 🤋 🕶
90 K	136,100 K	136,110 K	136,120 K	136,130 K	136,140 K	136,150 K	136,160 K 136
Tiling Path (Co 64.9 > GRCh37.p10 (GCF		ernate Loci and Patc	h Alignments			NW_003:	315925.1
NCBI Genes	LCN1P1		NP.	_065202.2	ABO *	─ ┤ NM_020469.2	


- The tiling path in GRCh37 switched in the middle of ABO gene resulting in a reference protein not present in humans.
- Patch adjusts tile path and fixes the problem.
- All patches will be incorporated into GRCh38, due this summer. Until then, all alignment is done against unpatched reference.

Single Nucleotide Variants (i.e. SNVs or SNPs)

- Single base substitution from reference
- Note that "reference" is not always the "major" allele
- "Multi-allelic" sites have more than 2 cataloged alleles

Small Insertions/Deletions

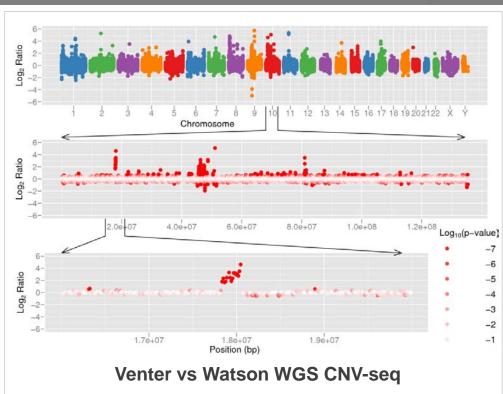
- Generally defined as being < 150bp (often much shorter)
- Frameshift insertions/deletions important "loss of function" class of variants
 - Although InDels divisible by three are "in-frame" when in coding region
- Hard to call consistently. Poor concordance between algorithms.
- Where to call an InDel in a homopolymer?
 - GTTTAC
 - GTTTTAC
 - 01234567
 - How do you describe the insertion? Ins of T at 5? Or ins of T at 1?
 - CGI in their v1 pipeline preferred calling insertion at end, others at beginning, now always at beginning
- MNP Can also be called differently

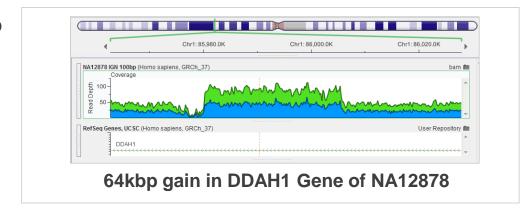
Copy Number Variants

Required WGS

- CNVs > 10kb pretty accurate.
- 1kb to 10kb problematic.

Detecting Deletions


- Can see coverage drop to near zero
- Harder to pinpoint breakpoint
- Possible false positives in lowmappability regions


Amplifications

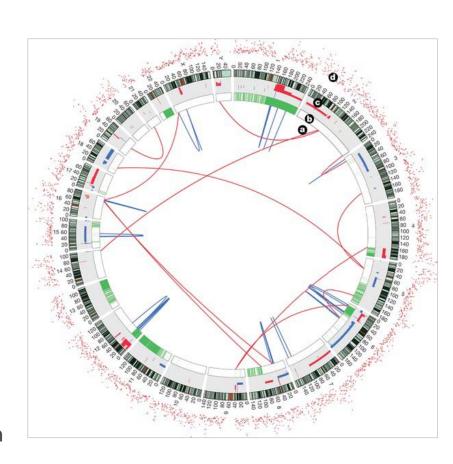
- Can see coverage jump
- False positives due sample prep or sequence artifacts

Need "baseline," look at Log Ratio

- Somatic detection uses normal tissues
- Can have control population

Structural Variants

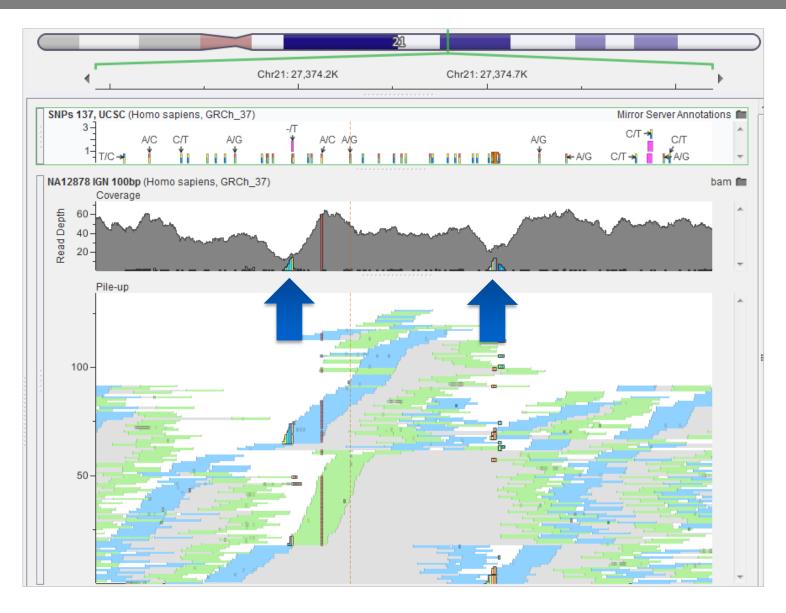
Looking for:


- Balanced rearrangements
- Inversions
- Translocations
- Complex

Signals to detect SV:

- Paired-end mappings too big (deletion)
- Depth of coverage
- Split-read mapping

Translocations can result in "fusion" genes.


 For example BCR-ABL fusion gene central in pathogenesis certain leukemias.

Example 1kb Inversion (intron of APP)

Tertiary Analysis – "Sense Making"

Detecting Known Clinically Relevant Variants

- Use targeted gene panels. Amplicons or custom capture.
- Look for carrier status or present of pathogenic or PGx variants

Rare, Functional Variant Search and Interpretation

- Rare Mendelian Diseases
- Clinical Diagnostic: Ending Diagnostic Odyssey
- Looking for rare variants of functional consequence to a known phenotype
- Exome sequencing common, but whole genome has proponents
- Trios often used for looking at inheritance of putative variants (compound hets)

Population Studies

- Like NHLBI or others studying complex disease
- Often looking at "variant burden" over genes between cases/controls

Driver Somatic Variant Identification

- Looking for variants in tumor samples but not matched normal
- Not just SNPs and InDels, but CNVs and SVs

Not just DNA... but still DNA sequencing

RNA-Seq

- Align to "transcriptome", but often do analysis with reference genome coordinates and reads "gapped" over introns they span in their spliced form
- Using read counts to approximate relative abundance of RNA in sample
- Compare relative abundance between groups
- Discover new transcribed genes or alternative splicing

ChIP-Seq

- Measure sites and intensities of various proteins binding to DNA
- ENCODE project used to catalog TFBS and other functional elements

Methyl-Seq

- Get sequences only with epigenetic methylation mark
- Run peak identification and intensity to look at relative levels of methylation

Agenda

- 1 Background and Definitions
- 2 Why You Should Care About Your Upstream?
- 3 A Drink from the Bioinformatics Firehose
- 4 Service Provider Deliverables: CEPH Trio Example
- 5 Applications That Require Special Upstream Analysis

The Promise

- Both in research and clinical care, NGS is powering discoveries making impactful diagnoses
- Desktop sequencers and gene panels much more economical than gene-by-gene hunts
- Exomes have lead to many rare disease diagnoses and affordably assay rare functional variants
- Whole genomes have led to clinical success stories and promise to be instrumental to our understanding of complex disease genetics
- Barrier to entry is lower than ever

Things That Can Confound Your Experiment

Library preparation errors	Sequencing errors	Analysis errors
 PCR amplification point mutations (e.g. TruSeq protocol, amplicons) Emultion PCR amplification point mutations (454, Ion Torrent and SOLiD) Bridge amplification errors (Illumina) Chimera generation (particularly during amplicon protocols) Sample contamination Amplification errors associated with high or low GC content PCR duplicates 	 Base miscalls due to low signal InDel errors (particular PacBio) Short homopolymer associated InDels (Ion Torrent PGM) Post-homopolymeric tract SNPs (Illumina) and/or read-through problems Associated with inverted repeats (Illumina) Specific motifs particularly with older Illumina chemistry 	 Calling variants without sufficient reads mapping Bad mapping (incorrectly placed read) Correctly placed read but InDels misaligned Multi-mapping to repeat/paralogous regions Sequence contamination e.g. adaptors Error in reference sequence Alignment to ends of contigs in draft assemblies Incorrect trimming of reads, aligning adaptors Inclusion of PCR duplicates

Your Choice of Technologies, Sometimes...

Platform	Illumina MiSeq	Ion Torrent PGM	Ion Torrent Proton	PacBio RS	Illumina HiSeq 2000
Instrument Cost*	\$125 K	\$50 K	\$150K	\$695 K	\$654 K
Sequence yield per run	1.5-2Gb	20-50 Mb on 314 chip, 100-200 Mb on 316, 1Gb on 318	10Gb on PI, 30GB on PII (Mid 2013)	100 Mb	600Gb
Sequencing cost per Gb*	\$502	\$500 (318 chip)	\$70 (PI chip)	\$2000	\$41
Run Time	27 hours***	2 hours	3 hours	2 hours	11 days
Reported Accuracy	Mostly > Q30	Mostly Q20	Claimed >Q30	<q10< td=""><td>Mostly > Q30</td></q10<>	Mostly > Q30
Observed Raw Error Rate	0.80 %	1.71 %	Probably ~1%	12.86 %	0.26 %
Read length	up to 150 bases	~200 bp	100bp (200bp PII)	Average 1500 bases	up to 150 bases
Paired reads	Yes	Yes	Yes	No	Yes
Insert size	up to 700 bases	up to 250 bases	up to 250 bases	up to 10 kb	up to 700 bases
Typical DNA requirements	50-1000 ng	100-1000 ng	100-1000 ng	~1 µg	50-1000 ng
Applications	Targeted	Targeted	Exomes, RNA-Seq	Assembly, Validation	Exomes, Genomes, RNA

[Show SNPs/Indels GenomeBrowse]

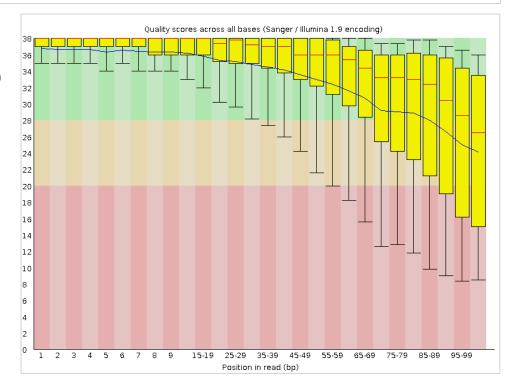
Agenda

- 1 Background and Definitions
- Why You Should Care About Your Upstream?
- 3 A Drink from the Bioinformatics Firehose
- 4 Service Provider Deliverables: CEPH Trio Example
- 5 Applications That Require Special Upstream Analysis

Agenda

- 1 Background and Definitions
- Why You Should Care About Your Upstream?
- 3 A Drink from the Bioinformatics Firehose
- 4 Service Provider Deliverables: CEPH 7
- File formats
- Popular tools
- QA Filtering
- Visualization
- 5 Applications That Require Special Ups

FASTQ



Contains 3 things per read:

- Sequence identifier (unique)
- Sequence bases [len N]
- Base quality scores [len N]
- Often "gzip" compressed (fq.gz)
- If not demultiplexed, first 4 or 6bp is the "barcode" index. Used to split lanes out by sample.

Filtering may include:

- Removing adapters & primers
- Clip poor quality bases at ends
- Remove flagged low-quality reads

SAM/BAM

- Spec defined by samtools author Heng Li, aka Li H, aka lh3.
- SAM is text version (easy for any program to output)
- BAM is binary/compressed version with indexing support
- Alignment in terms of code of matches, insertions, deletions, gaps and clipping
- Can have any custom flags set by analysis program (and many do)

```
QHD VN:1.3 SO:coordinate
@SQ SN:ref LN:45
r001 163 ref 7 30 8M2I4M1D3M = 37
                                    39 TTAGATAAAGGATACTG *
                                     O AAAAGATAAGGATA
r002
              9 30 3S6M1P1I4M *
r003
       0 ref 9 30 5H6M
                                     O AGCTAA
r004
       0 ref 16 30 6M14N5M
                                     O ATAGCTTCAGC
r003 16 ref 29 30 6H5M
                                      O TAGGC
                                                     NM:i:0
                                 7 -39 CAGCGCCAT
r001 83 ref 37 30 9M
```

Key Fields

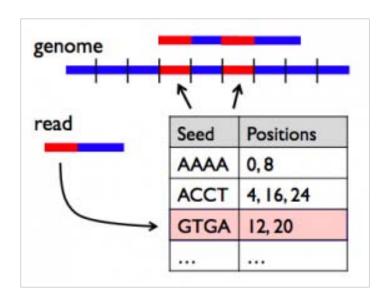
- Chr, position
- Mapping quality
- CIGAR
- Name/position of mate
- Total template length
- Sequence
- Quality

VCF

- Specification defined by the 1000 genomes group (now v4.1)
- Commonly compressed indexed with bgzip/tabix (allows for reading directly by a Genome Browser)
- Contains arbitrary data per "site" (INFO fields) and per sample
- Single-Sample VCF:
 - Contains only the variants for the sample.
- Multi-Sample VCF:
 - Whenever one sample has a variant, all samples get a "genotype" (often "ref")
- Caveat:
 - VCF requires a reference base be specified. Leaving insertions to be "encoded" 1bp differently than they are annotated

```
##fileformat=VCFv4.0
##fileDate=20090805
##source=myImputationProgramV3.1
##reference=1000GenomesPilot-NCBI36
##phasing=partial
##INFO=<ID=NS, Number=1, Type=Integer, Description="Number of Sa
##INFO=<ID=DP, Number=1, Type=Integer, Description="Total Depth
##INFO=<ID=AF, Number=., Type=Float, Description="Allele Frequents
##INFO=<ID=AA, Number=1, Type=String, Description="Ancestral Al
##INFO=<ID=DB, Number=0, Type=Flag, Description="dbSNP membersh:
##INFO=<ID=H2, Number=0, Type=Flaq, Description="HapMap2 member:
##FILTER=<ID=q10, Description="Quality below 10">
##FILTER=<ID=s50, Description="Less than 50% of samples have a
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=GO, Number=1, Type=Integer, Description="Genotype (
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Dept]
##FORMAT=<ID=HQ, Number=2, Type=Integer, Description="Haplotype
```

1	1	2	C	3	C	4	C	5	1	6		C	7	C	8	C	9	C	10	C	11
#CHROM		POS		ID		REF		ALT		QUAL			FILTER		INFO		FORMAT		NA00001		NA00002
20		14370	rs	6054257		(G	Α			29		PASS		NS=3;DP=14;AF=0.5	G	T:GQ:DP:HQ		0 0:48:1:51,51		1 0:48:8:51,51
20		17330		?			Г	Α			3		q10		NS=3;DP=11;AF=0.017	G	T:GQ:DP:HQ		0 0:49:3:58,50		0 1:3:5:65,3
20		1110696	rs	6040355			4	G,T			67		PASS		NS=2;DP=10	G	T:GQ:DP:HQ		1 2:21:6:23,27		2 1:2:0:18,2
20		1230237		?			Г	?			47		PASS		NS=3;DP=13;AA=T	G	T:GQ:DP:HQ		0 0:54:7:56,60		0 0:48:4:51,51
20		1234567		microsat1		GTC.	Г	G,GTACT			50		PASS		NS=3;DP=9;AA=G		GT:GQ:DP		0/1:35:4		0/2:17:2



Aligners

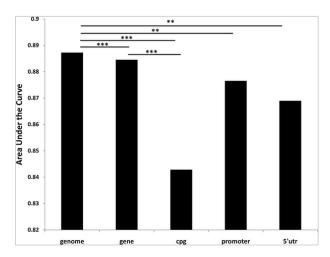
BWA (also by Li H)

- Most prolifically used for genome alignment
- BWA-SW version geared for long reads (>100bp)
- Supports aligning with insertions/deletions to reference
- Bowtie (John Hopkins, part of "Tuxedo" suite)
 - Very fast, used commonly in RNA-Seq workflows
 - Version 1 did not support "gapped" alignments
 - Bowtie2 supports local gapped, longer reads
- Novoalign, Eland, SOAP, MAQ,
 - Seed and expand strategy
- TopHat, SHRiMP, STAR, Gmap
 - Specifically designed for ESTs
- Most improved by paired-end (mate-pairs)

InDel Re-Alignment

Place, then realign "de Novo"

- Each read aligned independently by global aligner.
- May have different preference of how to handle "gaps" to reference.


Local Re-Aligners for InDels

- Pindel
- GATK

Important areas still problematic:

- CpG islands
- Promoter and 5'-UTR regions of the genome

reference	CAATC	realignment	CAATC
read1	CA-TC	>	CA-TC
read2	C-ATC		CA-TC

AUC (area under the curve) comparison for different genetic regions.

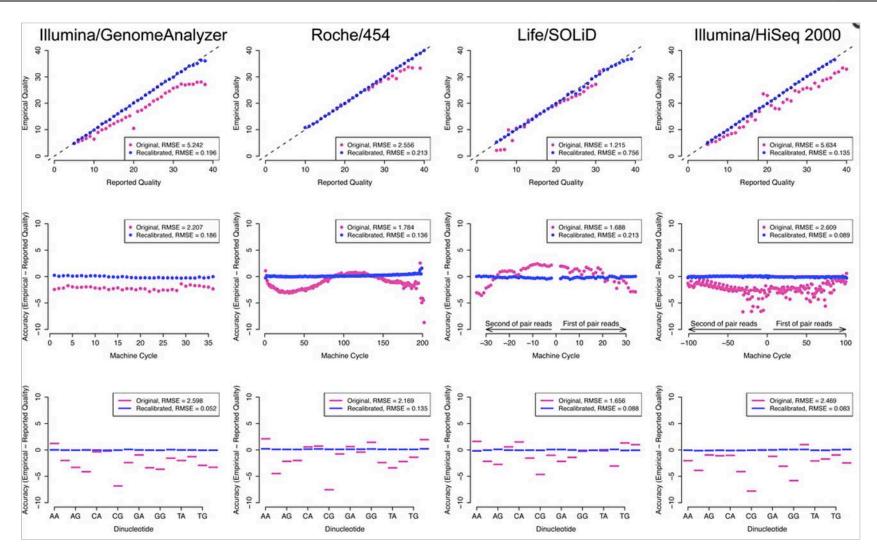
Variant Callers

Samtools

- "mpileup" command computes BAQ, preforms local realignment
- Many filters can be applied to get high-quality variants

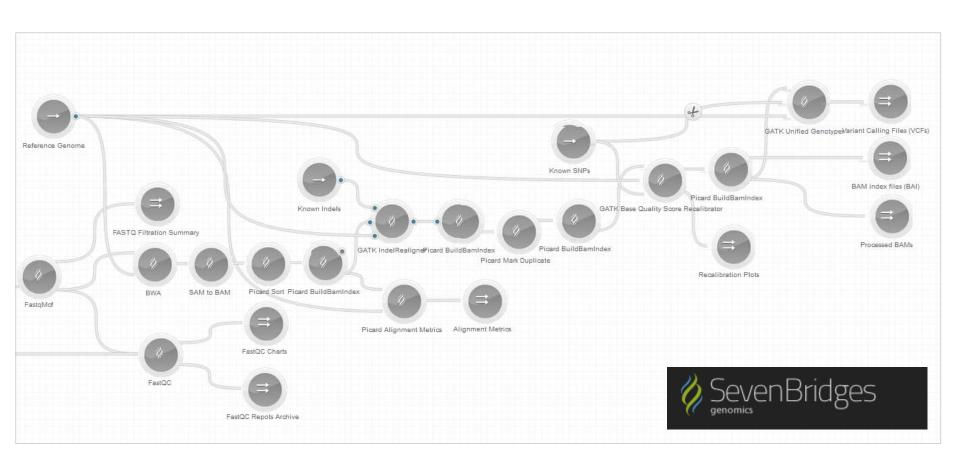
GATK

- More than just a variant caller, but UnifiedGenotyper is widely used
- Also provides pre-calling tools like local InDel realignment and quality score recalibration

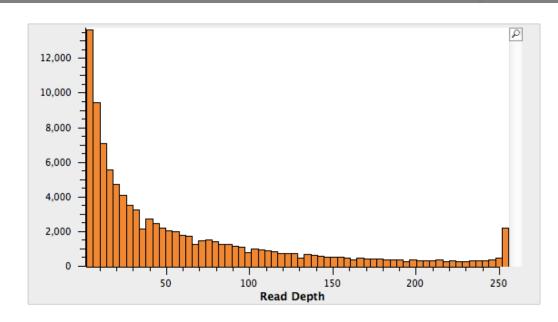

Custom tools specific to platform:

- CASAVA includes a variant caller for illumana whole-genome data
- Ion Torrent has a caller that handles InDels better for their tech

Quality Score Recalibration



BWA+GATK Best Practices Pipeline



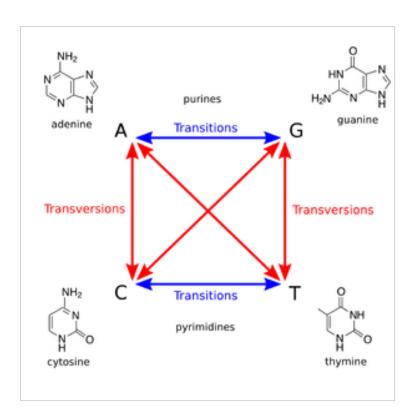
Getting to High Confidence Variants

- Hard filters versus heuristic based statistics
- <10bp considered threshold for "low coverage"
- Quality score recalibration

		Unfiltered	Provided	RD>10 & GQ>20	Exonic
	SNPs	98621	89132	65009	19365
Gabe <	InDels	8141	7800	6503	428
	Ts/Tv	2.36	2.45	2.54	3.26
Trio	Mendel Errors	234	202	46	3

Ti/Tv

 Ts/Tv ratio can measure true biological ratio of mutation types versus sequence error:


- Random seq errors: 2/4 or 0.5

- Genome-wide: ~2.0-2.1

Exome capture: ~2.5-2.8

- Coding: ~3.0-3.3

 Divergent too far than this indicates random sequence errors biasing the number.

DePristo (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genetics 43(5) 491

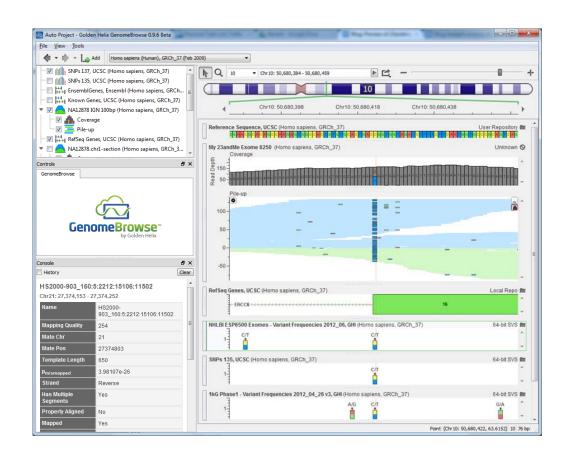
Visualization

Genome browsers:

- Validate variant calls
- Look at gene annotations, problematic regions, population catalogs
- Compare samples where no variant called

• Free Genome Browsers:

- IGV

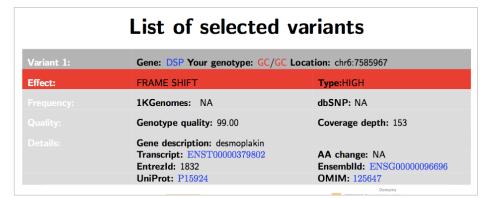

Popular desktop by Broad

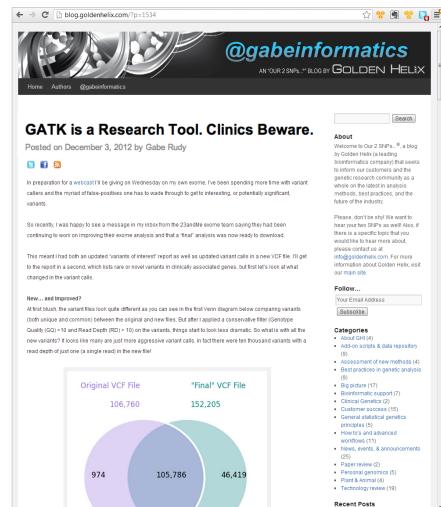
- UCSC

 Web-based, most extensive annotations

GenomeBrowse

- Designed to be publication ready
- Smooth zoom and navigation

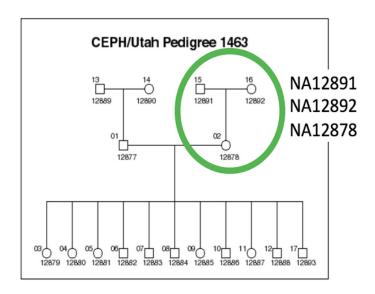



Updates in Software Can Introduce Bugs

 Found 8K phantom variants in my "final" 23AndMe exome

[My 23andMe "Buggy" Variant and Interpretation Example]

Agenda



- 1 Background and Definitions
- Why You Should Care About Your Upstream?
- 3 A Drink from the Bioinformatics Firehose
- 4 Service Provider Deliverables: CEPH Trio Example
- 5 Applications That Require Special Upstream Analysis

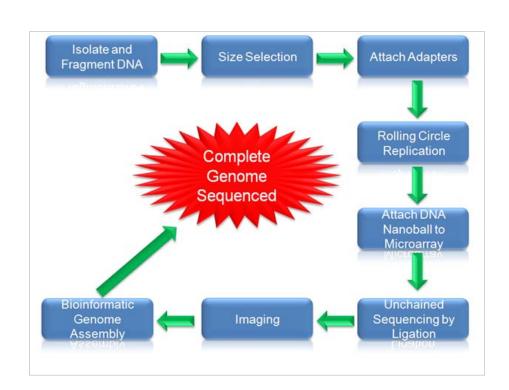
Recent Blog Post

The State of NGS Variant Calling: Don't Panic!! http://blog.goldenhelix.com/?p=1725

POLL:

From which sequencing provider(s) do you receive your upstream data from?

Complete Genomics



Different:

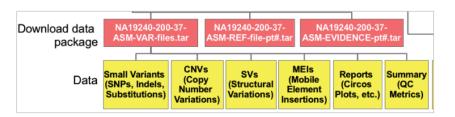
- Sequencing technology
- Alignment/variant calling algorithms
- File formats

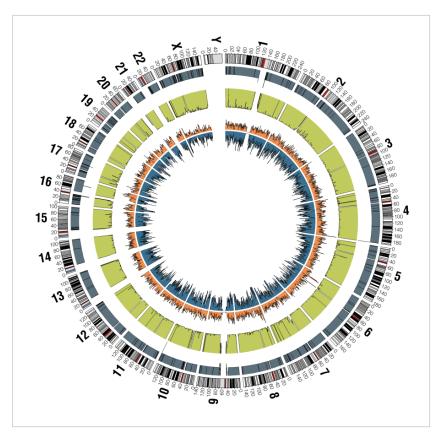
But high quality:

- MNPs, Indels
- CNV/SV calls
- Whole genome only
- Also provide tumor/normal pair analysis
- Being acquired by BGI, some question their sustainability

Complete Genomics Deliverables

Summary statistics


- "var" and "masterVar" files
 - Can be converted to VCF
 - Some tools (like SVS) can import them directly

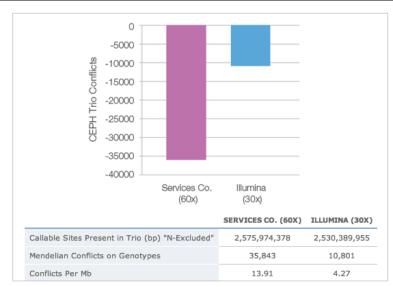

Evidence files

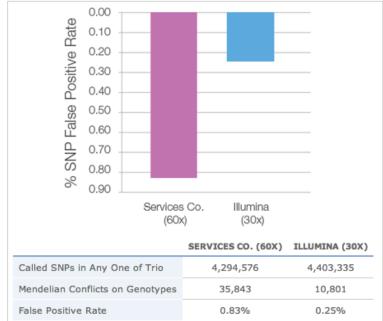
Can be converted to BAM

CNV, SV calls in text files

- CNV: Chr1:85980000-86006000 2.06 4x gain, covers DDAH1
- SV: Chr21:27374158-27374699 common inversion

Illumina Genome Network


 Standardized sequencing and analysis, but multiple labs may be contracted service provider.

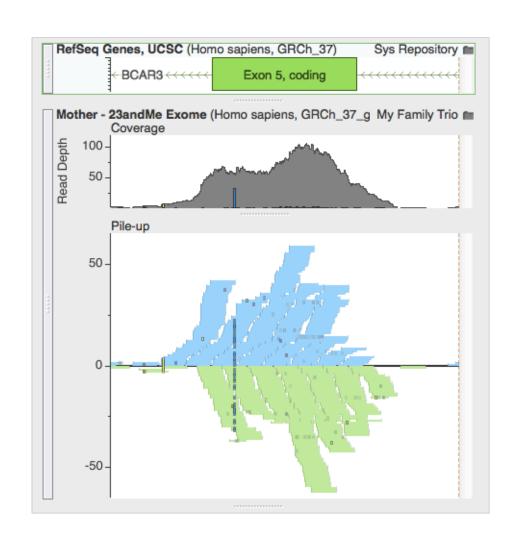

30x whole genomes

- SNPs, InDels, CNVs, SVs
- Concordance with SNP array (provided)
- Summary report

Illumina provided tools used

- CASAVA toolkit with ELAND aligner
- Also provide Tumor/Normal pair
 - Somatic SNVs and InDels identified by looking at the tumor/normal together

Your Local Core Lab – Or 23andMe Exome Pilot!



Research core labs often use a BWA+GATK pipeline

- Especially for exomes

Deliverables:

- VCF with SNVs, InDels
- BAM
- Tools for CNV/SV calling less standardized
 - Not commonly attempted with exomes

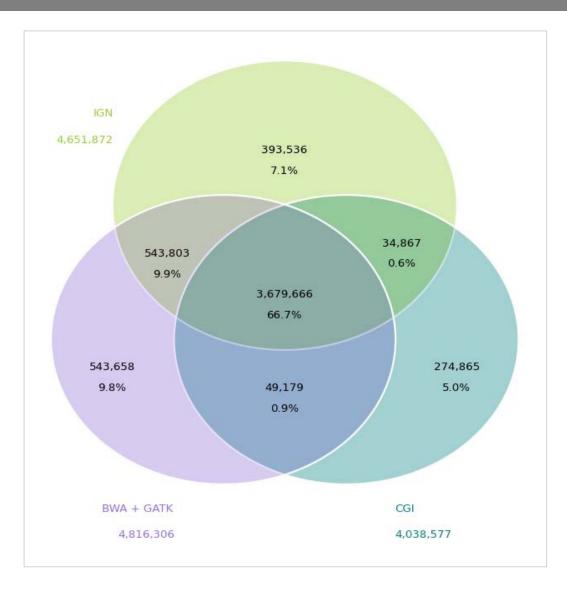
CEPH Trio

The "benchmark" trio.

- Child, female NA12878 may be the most sequenced cell line
- Father NA12891 and Mother NA12892

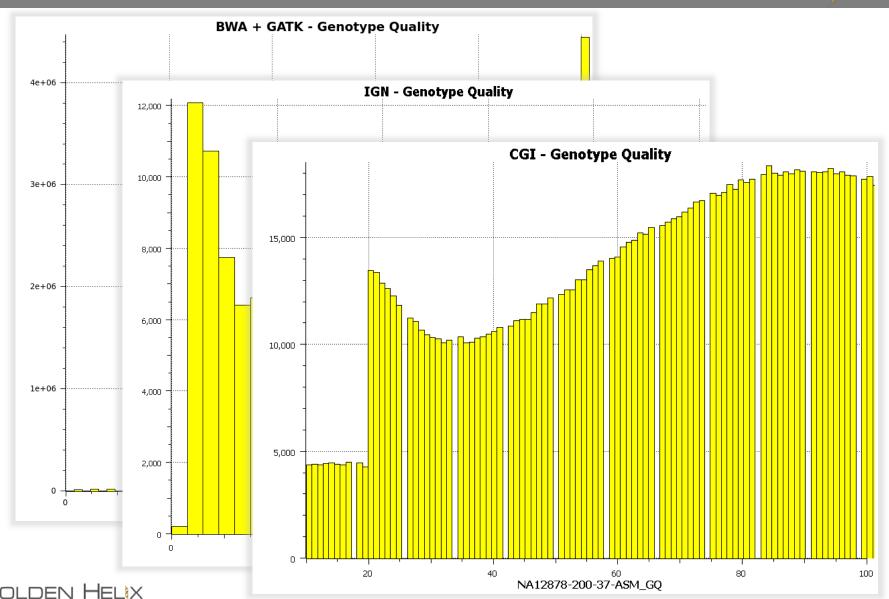
Whole Genome Data for Trio

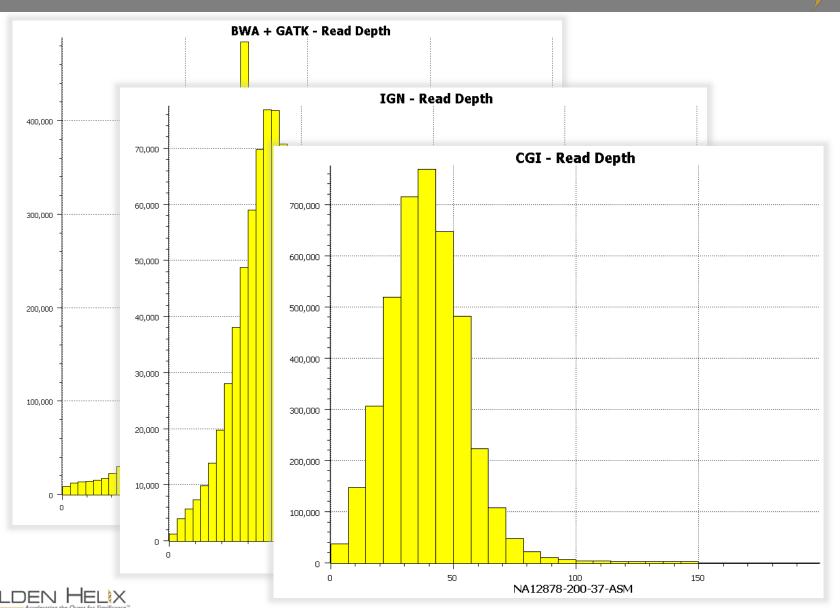
- CGI with v2 pipeline
- IGN WGS at 30x, 100bp PE
- "Core Lab" BWA + GATK Best Practices on 100bp PE

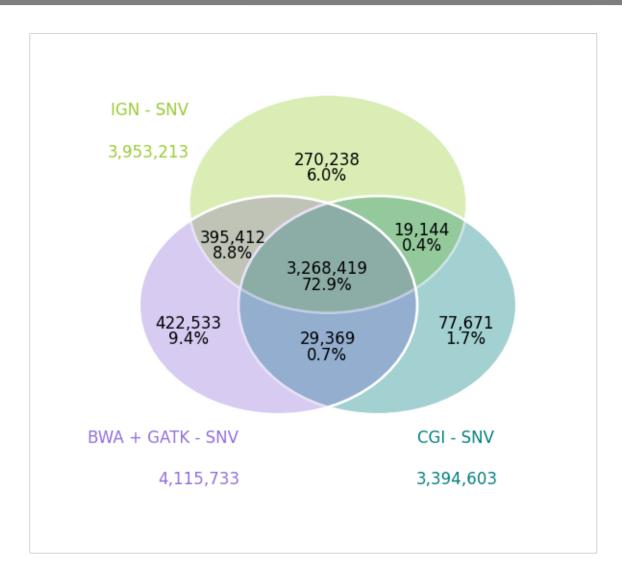

Concordance and Comparisons

- Lets interactively review examples where these three service providers differ and how.

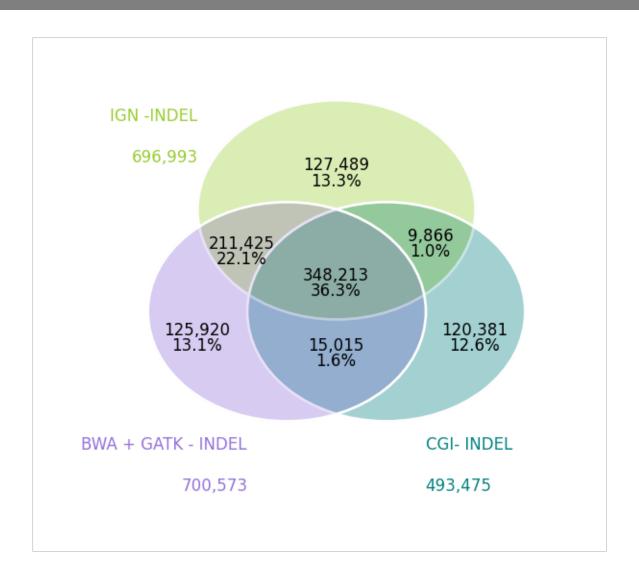
Total Imported Variants


Genotype Quality


Genotype Quality


Read Depth

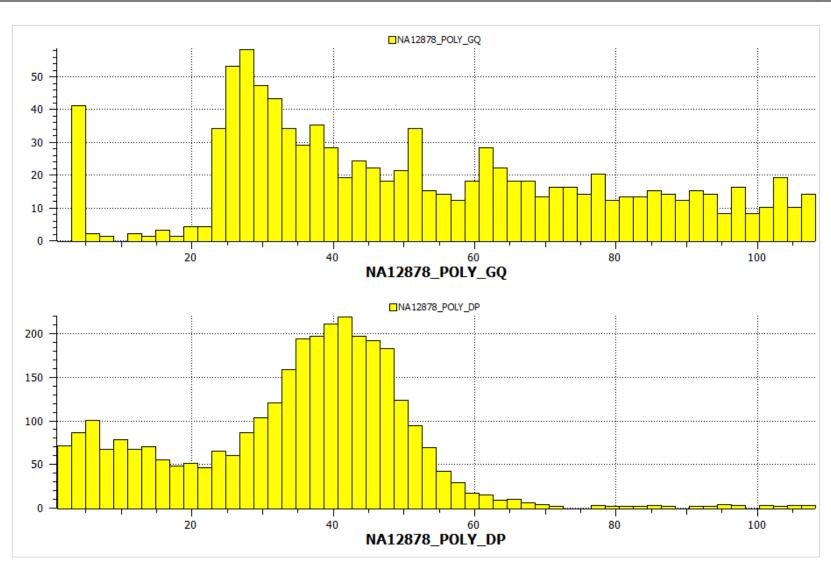
SNV Concordance Rate



InDel Concordance Rate



De Novo Mutations in Trio



GQ and **DP** of Shared de Novo Mutations

[deNovo and SV/CNV of NA12878 trio]

Agenda

- 1 Background and Definitions
- Why You Should Care About Your Upstream?
- 3 A Drink from the Bioinformatics Firehose
- 4 Service Provider Deliverables: CEPH Trio Example
- Applications That Require Special Upstream Analysis

Applications That Require Special Upstream Analysis

- MHC Region
- Somatic Variant Calling
- RNA-Seq
- Alu and other repeats
- Phased variants and complex MNP
- Moving to a new reference genome

Somatic Sniper and Friends

- Complete Genomics and IGN provide secondary alignment specific to tumor/normal pairs.
- Do variant calling with on BAMs on pair in conjunction
- SomaticSniper approach:
 - Covered by at least 3 reads
 - Consensus quality of at least 20
 - Called a SNP in the tumor sample with SNP quality of at least 20
 - Maximum mapping quality of at least 40
 - No high-quality predicted indel within 10 bp
 - No more than 2 other SNVs called within 10 bp
 - Not in dbSNP (non-cancer dbSNP)
 - LOH filter (germline is het and tumor is homozygous)

What's Next?

Co-Located with

TCEC CITICAL

Epigenome

CONFERENCE

Above the Genome - Underlying Disease

The Analysis and Interpretation of My DTC 23andMe Exome

Short Courses

Assembly and Alignment

@gabeinformatics
AN*OUR 2 SNPS..** BLOG BY GOLDEN HELEX

blog.goldenhelix.com

Download

Killer App



Questions?

Use the Questions pane in your GoToWebinar window

