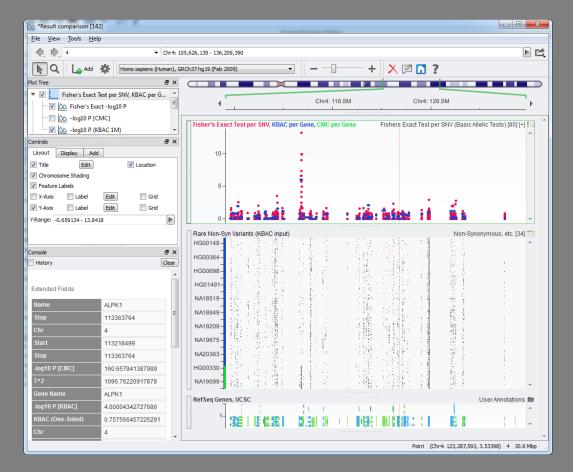


Rare Variant Analysis Workflows: Analyzing NGS Data in Large Cohorts

Nov 13, 2013

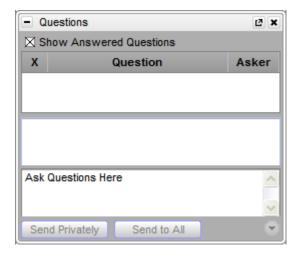
Bryce Christensen Statistical Geneticist / Director of Services



Rare Variant Analysis Workflows: Analyzing NGS Data in Large Cohorts

Nov 13, 2013

Bryce Christensen Statistical Geneticist / Director of Services



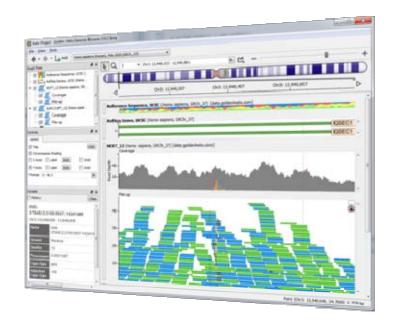
Questions during the presentation

Use the Questions pane in your GoToWebinar window

About Golden Helix

DISCOVERYOR

Leaders in Genetic Analytics


- Founded in 1998
- Multi-disciplinary: computer science, bioinformatics, statistics, genetics
- Software and analytic services

GenomeBrowse

- Free sequencing visualization tool
- Launched in 2011
- Makes the process of exploring DNAseq and RNA-seq pile-up and coverage data intuitive and powerful
- Stream public annotations via the cloud
- Use it to validate variant calls, trio exploration, de Novo discovery, and more

SNP & Variation Suite (SVS)

_ 0 X

8

LICENSE INFORMATION

Version 8.0.0 Win64 Released 2013-10-11 License ID 4333

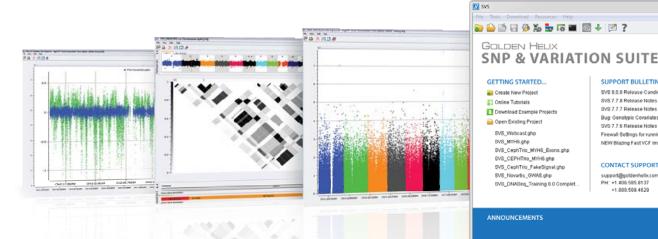
Expires Jul 14 2015

PACKAGE

Power Seat

SVS Core

GenomeBrowse


DNA-Seg Analysis

RNA-Seq Analysis

SNP Analysis

CNVAnalysis

PBAT Analysis

Core Features

- Powerful Data Management
- Rich Visualizations
- Robust Statistics
- Flexible
- Easy-to-use

Applications

SVS_Webcast.ghp

SVS_CephTrio_MYH6_Exons.ghp

SVS_CephTrio_FakeSignal.ghp

SVS_DNASeq_Training 8.0 Complete

SVS_CEPHTrio_MYH6.ghp

SVS_Novartis_GWAS.ghp

SVS_MYH6.ghp

- Genotype Analysis
- DNA sequence analysis
- **CNV** Analysis
- RNA-seg differential expression

SUPPORT BULLETINS

SVS 7.7.8 Release Notes

SVS 7.7.7 Release Notes

SVS 7.7.6 Release Notes

CONTACT SUPPORT

support@goldenhelix.com

+1.888.589.4629

PH: +1.406.585.8137

SVS 8.0.0 Release Candidate No...

Bug: Genotypic Covariates for Mix

Firewall Settings for running Gold.

NEW Blazing Fast VCF Importer!

Family Based Association

Merging of Two Great Products

Performing Small-N Sequencing Workflows: Approaches to Analyzing Trio NGS Data

Autumn Laughbaum, Biostatistician

1 Define the problem: What is rare variant (RV) analysis?

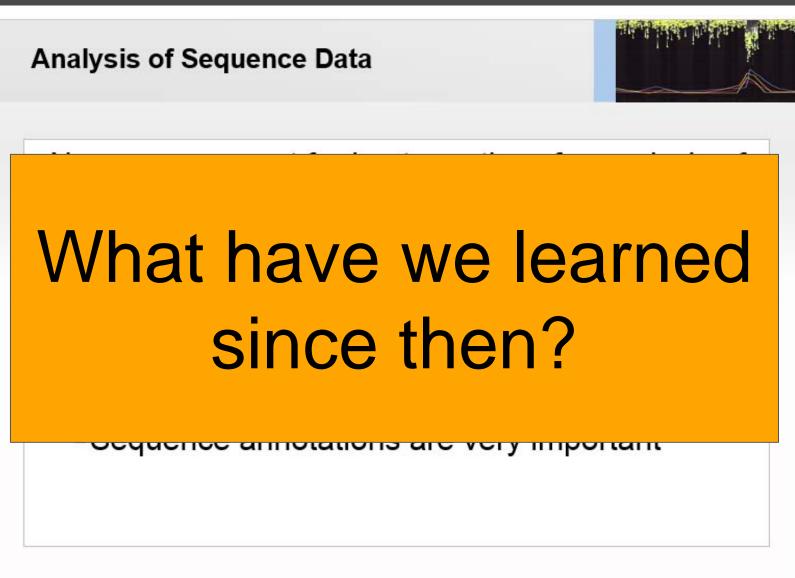
- 2 Brief review of upstream and QC considerations
- **3** Overview of RV analysis approaches
- 4 NGS workflow design in SVS
- 5 Interactive software demo

GenomeBrowse

SVS 8: Exploratory tools, Analysis workflows

6 What about exome chips?

The Problem

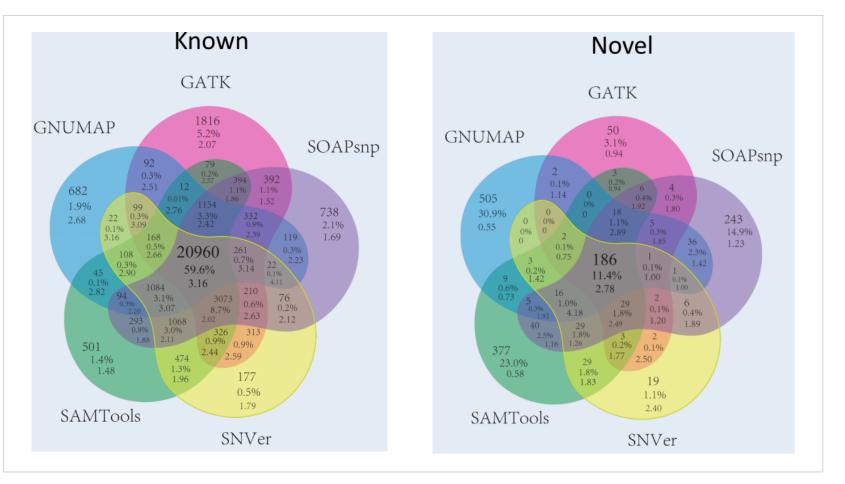

- Array-based GWAS has been the primary technology for genefinding research for most of the past decade
 - Common variant common disease hypothesis
- NGS technology, particularly whole-exome sequencing, makes it possible to include rare variants (RVs) in the analysis
- Individual RVs lack statistical power for standard GWAS approaches
 - How do we utilize that information?
- Proposed solution: combine RVs into logical groups and analyze them as a single unit
 - AKA "Collapsing" or "Burden" tests.

From the Vault: January 2011 Slide on RV Analysis

GOLDEN F

NGS Analysis

Primary Analysis	 Analysis of hardware generated data, on-machine real-time stats. Production of sequence reads and quality scores Typical product is "FASTQ" file 				
Secondary Analysis	 Recalibrating, de-duplication, QA and clipping/filtering reads Alignment/Assembly of reads Variant calling on aligned reads Typical products are "BAM" and/or "VCF" files 				
Tertiary Analysis "Sense Making"	 QA and filtering of variant calls Annotation and filtering of variants Multi-sample integration Visualization of variants in genomic context Experiment-specific inheritance/population analysis "Small-N" and "Large-N" approaches 				



NGS Analysis

Primary Analysis	 Analysis of hardware generated data, on-machine real-time stats. Production of sequence reads and quality scores Typical product is "FASTQ" file 				
Secondary Analysis	 Recalibrating, de-duplication, QA and clipping/filtering reads Alignment/Assembly of reads Variant calling on aligned reads Typical products are "BAM" and/or "VCF" files 				
Tertiary Analysis "Sense Making"	 QA and filtering of variant calls Annotation and filtering of variants Multi-sample integration Visualization of variants in genomic context Experiment-specific inheritance/population analysis "Small-N" and "Large-N" approaches 				

Gholson Lyon, 2012

Things That Can Confound Your Experiment

Library preparation errors

 PCR amplification point mutations (e.g. TruSeq protocol, amplicons)

Emulsion PCR amplification point mutations (454, Ion Torrent and SOLiD)

- Bridge amplification errors (Illumina)
- Chimera generation (particularly during amplicon protocols)
- Sample contamination
- Amplification errors associated with high or low GC content
- PCR duplicates

Sequencing errors

- Base miscalls due to low signal
- InDel errors (particular PacBio)
- Short homopolymer associated InDels (Ion Torrent PGM)
- Post-homopolymeric tract SNPs (Illumina) and/or read-through problems
- Associated with inverted repeats (Illumina)
- Specific motifs particularly with older Illumina chemistry

Analysis errors

- Calling variants without sufficient reads mapping
- Bad mapping (incorrectly placed read)
- Correctly placed read but InDels misaligned
- Multi-mapping to paralogous regions
- Sequence contamination e.g. adaptors
- Error in reference sequence
- Alignment to ends of contigs in draft assemblies
- Incorrect trimming of reads, aligning adaptors
- Inclusion of PCR duplicates

Nick Loman: <u>Sequencing data: I want the truth! (You can't handle the truth!)</u> Qual et al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics. 2012 Jul

What did we do in GWAS?

- Call rate
- HWE
- MAF
- But those aren't really applicable for NGS/RV analysis...

What do we use for NGS?

- Coverage depth
- Singleton counts
- Ts/Tv ratios
- Quality scores per variant and per genotype call
- Mappability of the region

NGS Analysis

Primary Analysis	 Analysis of hardware generated data, on-machine real-time stats. Production of sequence reads and quality scores Typical product is "FASTQ" file
Secondary Analysis	 Recalibrating, de-duplication, QA and clipping/filtering reads Alignment/Assembly of reads Variant calling on aligned reads Typical products are "BAM" and/or "VCF" files
Tertiary Analysis "Sense Making"	 QA and filtering of variant calls Annotation and filtering of variants Multi-sample integration Visualization of variants in genomic context Experiment-specific inheritance/population analysis "Small-N" and "Large-N" approaches

Direct search for susceptibility variants

- Assume highly penetrant variant and/or Mendelian disease
- Extensive reliance on bioinformatics for variant annotation and filtering
- Sample sizes usually small—from single case up to nuclear families

Rare Variant (RV) "collapsing" methods

- More common in complex disease research
 - May require very large sample sizes!
- Assume that any of several LOF variants in a susceptibility gene may lead to same disease or trait
- Many statistical tests available
- Also relies heavily on bioinformatics

Families of Collapsing Tests

Burden Tests

- Combine minor alleles across multiple variant sites...
 - Without weighting (CMC, CAST, CMAT)
 - With fixed weights based on allele frequency (WSS, RWAS)
 - With data-adaptive weights (Lin/Tang, KBAC)
 - With data-adaptive thresholds (Step-Up, VT)
 - With extensions to allow for <u>effects in either direction</u> (Ionita-Laza/Lange, C-alpha)

Kernel Tests

- Allow for individual variant effects in either direction and permit covariate adjustment based on kernel regression
 - Kwee et al., AJHG, 2008
 - SKAT
 - SKAT-O

Credit: Schaid et al., Genet Epi, 2013

- Multivariate test: simultaneous test for association of common and rare variants in gene
- Flexibility in variant frequency bin definition
- Testing methods include Hotelling T² and Regression
- Regression method allows for covariate correction
- Li and Leal, AJHG, 2008

- Per-gene tests models the risk associated with multi-locus genotypes at a per-gene level
- Adaptive weighting procedure that gives higher weights to genotypes with higher sample risks
 - Meant to attain good balance between classification accuracy and the number of estimated parameters
- SVS implementation includes option for 1- or 2-tailed test
 - But most powerful when all variants in gene have unidirectional effect
- Permutation testing or regression options
 - Regression allows for covariate correction
- Liu and Leal, *PLoS Genetics*, 2010

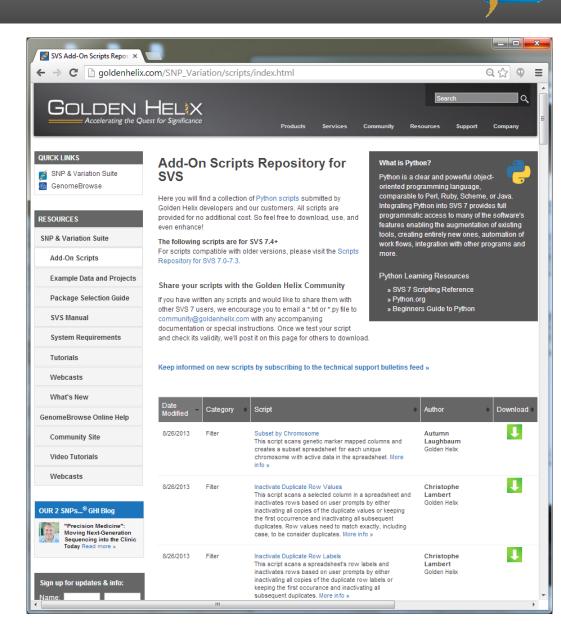
- Utilizes kernel machine methods
- Aggregates test statistics of SNPS over gene region to compute region level p-values
- Many extensions of the method
- "This method can be more powerful when causal variants have bidirectional effects and/or a large proportion of the variants within gene region are non-causal."
- "SKAT is less powerful than burden tests when causal variant effects are unidirectional."
 - Liu and Leal, PLoS Genetics, 2012

- The genomics community has spent years producing vast resources of data about DNA sequence variants
 - Some data is observational, like variant frequencies from the 1000 genomes project or the NHLBI Exome Sequencing Project
 - Other data is based on predictive algorithms, like PolyPhen or SIFT.
 - Even "simple" annotations, like mapping data for genes, segmental duplications and other sequence features are extremely valuable for analytic workflows.
- These data sources can be used to annotate variants identified in an NGS experiment
 - Annotations may be used for both QC and analysis purposes.
- Once annotated, variants may be filtered, sorted, and prioritized to help us identify disease-causing mutations

- SVS is very flexible in workflow design.
- SVS includes a broad range of tools for data manipulation and variant annotation and visualization that can be used together to guide us on an interactive exploration of the data.
- We begin by defining the final goal and the steps needed to help us reach that goal:
 - Are we looking for a very rare, non-synonymous variant that causes a dominant Mendelian trait?
 - Are we looking for a gene with excess rare variation in cases vs controls?
- Once we know what we are looking for, we can identify the available annotation sources that will help us answer the question.

Python Integration in SVS

🖸 SVS - SVS_CEPH6	ńó				
Fille Tools Impo	rt Download Resources	Help			
🔊 의 🍏 🗔	🧐 🛵 🍉 Tā 🔳 🛔	🗟 🕹 🗹 ?			
		igator Window	Node Chan	00100	
Navigator Window Nodes ID (Linked To)			Wed Jun 5 1 4:21:2	Contraction (1)	
* 📷 SVS_CEPHtrio Project 1			Version SVS W	164 7.7.6 (2013-0	
Pedigree Data 2 Uteer Bryce Christenser Bryce Christenser				hristensen «chri	
			Project create		
	Python Editor				24
	e Edit				
100 C	9 6 8 8 9 9				
Ma	nierMapManager, Spreadsheet,	SpreadsheetEditor, SVS, TradManag	5v		
		Python Shell			-
		and the second s	running python 2:7.1 on win32		


- Allows rapid development and iteration of new functions
- API access to most SVS functions
- Access to extensive Python analytic libraries
- Fully documented in manual

SVS Online Scripts Repository

- Downloadable add-on functions for a variety of analysis and data management tasks
- "Plug-and-play"
- Some contributed by customers
- Popular scripts often get adopted into the "shipped" version of SVS.
- Scripts in repository are forward compatible to SVS 8.0

Activate Variants by Genotype Count Threshold

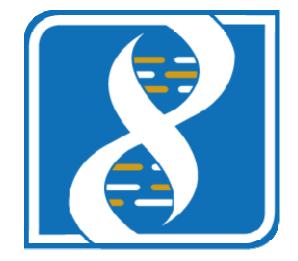
- Identify variants that occur with a specified frequency in one or several groups

Filter by Marker Map Field

- Variant-level "INFO" fields from VCF files are imported to the SVS marker map
- This script allows you to filter markers based on those variables

• Many more useful scripts to take a look at:

- Add Annotation Data to Marker Map from Spreadsheet
- Nonparametric association tests
- Import Unsorted VCF Files
- Build Variant Spreadsheet
- Many, many more



GenomeBrowse

- Exploring multi-sample VCF files in our free genome viewer software

SVS 8.0


- Exploratory analysis workflow
 - Using downloaded scripts
 - Using basic analysis tools to create advanced workflows
 - Simulate the development of a burden test
- RV association testing workflow
 - KBAC
 - CMC
 - Data visualization

SVS Demo

What about Exome Chips?

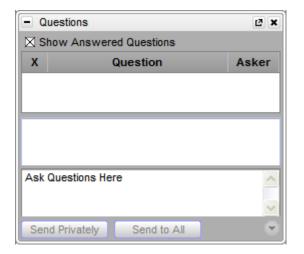
- Exome chips CAN be used with RV association tests
- Exome chips include both common and rare variants
- Remember: Exome chips don't capture all rare variants.
- Exome chips are thus less powerful than WES for RV associations, but also significantly cheaper.

Exome chips are <u>not</u> GWAS chips

- GWAS chips focus on common SNPs, have uniform spacing, minimal LD and are designed to capture population variability
- Exome chips include rare variants and the content is anything but uniform
- Most GWAS functions can be used with exome chips, but require some workflow adjustments
 - Gender checking
 - IBD estimation
 - Principal components
- Not unlike other chips with custom/targeted content
 - Cardio-MetaboChip
 - ImmunoChip

Questions or more info:

- info@goldenhelix.com
- Request a copy of SVS at www.goldenhelix.com
- Download GenomeBrowse for free at <u>www.GenomeBrowse.com</u>



Any Questions?

Use the Questions pane in your GoToWebinar window

