

Maximizing Public Data Sources for Sequencing and GWAS

February 4, 2014

G Bryce Christensen Director of Services

Questions during the presentation

Use the Questions pane in your GoToWebinar window

- 0	uestions		2 ×	
⊠s	how Answered	d Questions		
Х	Q	Question Aske		
	0			
ASK	Questions Here	;		
			~	
Ser	nd Privately	Send to All		

Agenda	Ø
1 Why Use Public Data?	
2 Where to Find Public Data	
3 Tips for Using Public Data	
4 Manipulating Public Data in SVS	
GOLDEN HELIX Accelerating the Quest for Significance"	

Why Use Public Data?

- Reference samples for assessing population structure in GWAS
- Replicating results of your own GWAS or other research
- Meta-analysis or Mega-analysis
- Testing new analytical methods
- Reference data for SNP imputation
- Increase study size with public controls

Sources of Public Data

- NCBI
 - dbGaP
 - GEO
 - SRA
- EGA
- HapMap Project
- 1000 Genomes Project
- Hardware vendors
- Software vendors
- All over the internet...

dbGaP

dbGaP

The database of Genotypes and Phenotypes (dbGaP) was developed to archive and distribute the results of studies that have investigated the interaction of genotype and phenotype.

- "Database of Genotypes and Phenotypes"
- 435 studies in database (as of January 28th)
- Known primarily as a GWAS database, but NGS content is growing
- Freely view and download results for many studies
- Access to raw phenotype and genotype data requires application process

435 Studies in dbGaP (January 28th)

GWAS Platforms

Affymetrix

- SNP-6.0: 51
- 500k: 15

Illumina

- HumanHap550: 37
- HumanHap300: 13
- HumanCNV370: 11
- Human610: 35
- Human660: 26
- Omni1: 22
- Omni2.5: 14
- Human_1M: 12

4

Perlegen

- 600k:

NGS Platforms

- **454: 22**
- GA-II: 49
- HiSeq 2000: 72
- HiSeq 2500: 3

dbGaP Tools

GaP Browser

 View GWAS study results in context of other genomic annotations

GaP Genome Browser

- Karyotype views of GWAS study results

PheGenl

- "Phenotype-Genotype Integrator"
- Search NHGRI and dbGaP study results by phenotype or by gene
- Annotated results with links to abstracts and/or dbGaP study pages.

Sign in to NCBI Resources 🖸 How To 🖸										
			Search All Databases							
I	ntegrator					360	Cir Clear	_		
_										
	Search Summary									
Sea	Search Criteria									
	Phenotype Selection									
	D Value: < 1 × 10	Neoplasms								
	Source: dbGap									
	Modify Search									
Sea	Accoriation Results	c 1 20 -4	20 50000	had by phonotype to	ait D Value and Co	urco				
		1 - 12 of	12 Searc	hed by gene IDs retr	ieved from associat	ion results				
	SNPs N	1 - 12 of	12 Searc	hed by SNP rs numb	ers retrieved from a	ion results.	ts			
	eOTL Data >	No data	found. Searc	hed by SNP rs numb	ers retrieved from a	ssociation resul	ts and P-Value			
	dbGaP Studies >	1 - 12 of	12 Searc	hed by traits retrieve	d from association	results.				
	Genome View ►	10 SNPs	and 12 genes	genes over 9 chromosomes.						
	Modify Search Show	All Hide All								
	Search Criteria								0	
	on on on on								U - V	
- 4	Association Result	5							1 🔶 🔶	
1 - 20	of 20 Download Mo	dify Search								
#	Trait +	rs #	Context \$	Gene +	Location \$	P-value ▲	Source +	Study +	PubMed *	
1	Prostatic Neoplasms	rs2033518	intergenic	RPS8P6, RPSAP32	<u>3: 467,783</u>	3.369 x 10 ⁻¹⁵	<u>dbGaP</u>	phs000007	17903305	
2	Prostatic Neoplasms	rs2033518	intergenic	RPS8P6, RPSAP32	<u>3: 467,783</u>	3.369 x 10 ⁻¹⁵	<u>dbGaP</u>	phs000342	17903305	
3	Prostatic Neoplasms	<u>rs10483549</u>	intergenic	FSCB, C14orf28	14: 45,334,026	<u>1.167 x 10⁻¹⁰</u>	<u>dbGaP</u>	phs000007	17903305	
4	Prostatic Neoplasms	<u>rs10483549</u>	intergenic	FSCB, C14orf28	14: 45,334,026	<u>1.167 x 10⁻¹⁰</u>	<u>dbGaP</u>	phs000342	<u>17903305</u>	
5	Prostatic Neoplasms	rs6852312	intergenic	CXXC4, RPL6P14	<u>4: 105,514,170</u>	2.028 x 10 ⁻¹⁰	dbGaP	phs000007	17903305	
6	Prostatic Neoplasms	rs6852312	intergenic	CXXC4, RPL6P14	<u>4: 105,514,170</u>	2.028 x 10 ⁻¹⁰	<u>dbGaP</u>	phs000342	17903305	
7	Prostatic Neoplasms	<u>rs10519485</u>	intron	UBE3A	15: 25,602,101	2.035 x 10 ⁻¹⁰	<u>dbGaP</u>	phs000007	<u>17903305</u>	
8	Prostatic Neoplasms	<u>rs10519485</u>	intron	<u>UBE3A</u>	15: 25,602,101	2.035 x 10 ⁻¹⁰	<u>dbGaP</u>	phs000342	<u>17903305</u>	
9	Prostatic Neoplasms	<u>rs1778329</u>	intron	PIP4K2A	10: 22,926,034	<u>4.181 x 10⁻¹⁰</u>	<u>dbGaP</u>	phs000007	<u>17903305</u>	
10	Prostatic Neoplasms	<u>rs1778329</u>	intron	PIP4K2A	10: 22,926,034	4.181 x 10 ⁻¹⁰	<u>dbGaP</u>	phs000342	<u>17903305</u>	
11	Prostatic Neoplasms	<u>rs4740951</u>	intron	DMRT1	<u>9: 864,834</u>	4.887 x 10 ⁻¹⁰	<u>dbGaP</u>	<u>phs000007</u>	17903305	

Applying for dbGaP data

- Each application is reviewed by a "DAC," or data access committee
 - I've seen approval time range from 1 to 8+ weeks.

Keep proposals relatively simple

- Read the instructions and be sure that your application is complete before submitting
- Contact DAC before submitting if you have special needs or concerns
- Some datasets require IRB approval to access
 - Waiver letter is often sufficient
- Pay attention to data embargoes
- External collaborators and contractors must apply separately for access
- Pay attention to consent groups
 - General research use
 - Non-commercial use
 - Disease-specific use

Using dbGaP Data

- Know what you are getting—read the documentation!
 - Original study design
 - Data processing and formats
- Be patient and thorough as you explore the data--treat it like fresh new data and don't assume that it is "clean."
- Phenotype data is usually stored in text files, often with a separate data dictionary.
 - Read the documentation!
- Carefully review phenotype data for completeness and consistency.
 - Data from multi-center projects can be particularly problematic

Using dbGaP Data, continued

Many studies include three levels of genotype data:

- Raw data
 - CEL or iDat files
 - Hardest to use
- Processed data
 - Genotype calls or Log Ratio values
 - Individual and/or matrix formats
- QC'ed data
 - As used for the public analysis results
 - Easiest to use (usually in a format supported directly by SVS)
- Start from the raw or minimally processed data and do your own QC whenever possible.

A sampling of issues GHI has observed in dbGaP and elsewhere:

- Gender discrepancies
- Cryptic relatedness
- Phenotype data formatted differently between sample groups in a study
- Incomplete matching of subjects between raw and processed genotype data.
 - Example: 500 with raw data, 510 with processed data, 495 with both.
- Nsp/Sty mismatches in Affy 500k data
- Batch effects processed genotypes

 Caucasian controls from one center have very different allele frequencies than the Caucasian controls from another center...

GEO – Gene Expression Omnibus

- "GEO is a public functional genomics data repository... Tools are provided to help users query and download experiments and curated gene expression profiles."
- Primarily a gene expression database, but also includes extensive genotype data

Data access:

- "Anybody can access and download public GEO data. There are no login requirements."
- "NCBI places no restrictions on the use or distribution of the GEO data. However, some submitters may claim patent, copyright, or other intellectual property rights in all or a portion of the data they have submitted."

GEO Data Profile

• 3413 studies, 1335 with human data (1239 mouse, 311 rat, etc.)

Genotype data among the human datasets:

- 730 datasets flagged as containing some SNP array data
 - 11,715 samples among 200 data series for Affy 6.0
 - 9689 samples in 152 series for Affy 250k-Nsp
 - 1757 samples in 26 series for Illumina Omni-1
 - 1245 samples in 11 series for Illumina 550k
- Sample sizes are generally much smaller than with dbGaP
- Many studies are based on somatic tissues
- GEO database structure is sample oriented, very detailed, and very different from dbGaP

GEO: Browsing the Database

- Browse data by platform to get data for every sample or study to use a particular chip.
 - 762 samples in 24 studies using Illumina Human1M-Duo.
- Browse by study design to get data for similar types of studies.
 - 403 results for "SNP genotyping by SNP array."
 - 654 results for "Genome variation profiling by SNP array."

		. 🗆 🗙
S GEO Accession viewer	r ×	
← → C 🗋 www	v.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL8887	☆ =
S NCBI	Gene Expression Omnibu:	
NCBI > GEO > Accessi	ion Display 🛙	GEO Pu
Scope: Self 🔻 F	Format: HTML V Amount: Quick V GEO accession: GPL8887	GO
Platform GPL8887	Query DataSets for GPL8887	
Status Title Technology type Distribution Organism Manufacturer Manufacture protoco	Public on Jul 27, 2009 Illumina Human610-Quad v1.0 BeadChip oligonucleotide beads custom-commercial Homo sapiens Illumina, Inc. I See manufacturer's website	
Submission date Last update date Contact name E-mail Organization name Street address City State/province ZIP/Postal code Country	Jul 20, 2009 May 24, 2013 GEO admin geo@ncbi.nlm.nih.gov NCBI/NLM/NIH 9000 Rockville Pike Bethesda MD 20892 USA	
Samples (1549) ⊯ More Series (30) ⊫ Less	GSM430351, GSM430352, GSM430353, GSM430354, GSM430355, GSM430356GSE17205Illumina HapMap CEU (Human610-Quadv1)GSE17205Illumina HapMap CHB and JPT (Human610-Quadv1)GSE17207Illumina HapMap YRI (Human610-Quadv1)GSE19349Genotyping and analysis of chromosome copy number variation (CNV) from pediatric primary intracranial germ cell tumorGSE19350Array-based bioinformatic analysis on pediatric primary central nervous system germ cell tumorsGSE19385Genotyping in Neuroblastoma Primary tumorsGSE21097Acquired chromosome abnormalities in the lungs of patients with Pulmonary Arterial Hypertension (Illumina)GSE21248Genome-wide Patterns of Population Structure and Admixture among Hispanic/Latino Populations	

Using GEO Data

- GEO is a good resource for test data and reference data.
- There are a few large GWAS studies, but not many.
- GEO has several human diversity reference panels available for various genotyping arrays.
 - Illumina posts HapMap data there for many of their arrays.
 - Other diversity panels from NIA, Mayo, others.
- Raw and processed data formats are usually available.
- "Series Matrix File" is a plain text format that is fairly easy to work with.

SRA: Sequence Read Archive

• SRA...

- "Archives raw oversampling NGS data for various genomes from several platforms"
- "Shares NGS data with EMBL and DDBJ"
- "Serves as a starting point for 'secondary analysis"
- Provides access to data from human clinical samples to authorized users who agree to the dataset's privacy and usage mandates."
- SRA primarily stores reads reads (SRA/fastq) and alignments (BAM)
- SRA hosts sequence data for some dbGaP and EGA studies
 - Data not part of public SRA, but searchable summaries do appear on SRA.
- PubMed abstracts can be linked to research data on SRA

Our Team's Experience with SRA

 A recent Golden Helix webcast featured bison and cattle sequence data from SRA. Read about it on our blog!

EGA: European Genome-Phenome Archive

enome-phenome

The European Bioinformatics Institute

Part of the European Molecular Biology Laboratory

- European equivalent of dbGaP
- Many EGA datasets are searchable on dbGaP
- May be most familiar as the repository for the WTCCC GWAS data
- From 2013 IGES talk by Justin Paschall:
 - Over 450 studies in EGA
 - Extensive sequence data, including 110k BAM files and 35k fastq
 - Current submission rate of about 30TB/month
- From personal experience: don't forget to request the decryption key...

A Few More Sources

- Illumina provides example data for most of their genotyping chips
 - Complete HapMap Phase 2 populations for some, subset for others
- Major imputation software developers have 1000 Genomes reference panels available in their preferred input formats
 - Beagle
 - Impute2
 - MACH
- Golden Helix offers several public datasets for download from within SVS
 - HapMap data for various genotyping chips
 - 1000 Genomes
 - Complete Genomics

Agenda	P
1 Why Use Public Data?	
2 Where to Find Public Data	
3 Tips for Using Public Data	
4 Manipulating Public Data in SVS	
GOLDEN HELIX Accelerating the Quest for Significance**	

Final Tips for Using Public Data

- Read the documentation BEFORE you download the full archive
- Be vigilant with QC
- You can't be too careful, especially when combining data from multiple sources
 - Start from raw data and process each source with a standard protocol. Re-calling genotypes is never a bad idea.
 - Pay special attention to strand orientation
 - Best if all sources were genotyped with the same array, but consider using imputation to combine data from mismatched arrays
 - Always adjust statistical tests for the data source
- Examine results carefully before reporting or publishing
 - Give special attention to results involving rare alleles.
 - If something seems fishy, it probably is.

Challenges of Public Data

P

Some of the challenges we hear about at Golden Helix:

"These files are really big!"

- Welcome to the world of bioinformatics. Small hard drives need not apply.

"Do I need a Linux computer to work with dbGaP data?"

- No, but if you're in Windows, you will find that a Linux emulator like CygWin is very useful for manipulating the data. Compression utilities like WinRar and 7-Zip may also be helpful.
- "There are a bunch of different data formats here..."
 - Many of the standard formats you find on dbGaP and elsewhere can be read by SVS.
 Contact us if you're not sure about a particular file—we might already have an import script that will work with it.
- "I can read the data in text files, but it needs some serious manipulation before I can use it."
 - Data manipulation? That's one of the most powerful features in SVS...

SNP & Variation Suite (SVS)

Core Features

- Powerful Data Management
- Rich Visualizations
- Robust Statistics
- Flexible
- Easy-to-use

Applications

- Genotype Analysis
- DNA sequence analysis
- CNV Analysis
- RNA-seq differential expression
- Family Based Association

GOLDEN HELX Accelerating the Quest for Significance*

GOLDEN HELIX SNP & VARIATION SUITE

[Demonstration]

Questions or more info:

- Email info@goldenhelix.com
- Request an evaluation of the software at <u>www.goldenhelix.com</u>

Questions?

Use the Questions pane in your GoToWebinar window

🗕 Questi	ons			17 X
X Show	Answered	d Questions		
X Question Asl			Asker	
Ask Ques	tione Hore			
Ask Ques	auons nere	,		-
				~
Send Pri	vately	Send to All		

