

Five Functional Prediction Algorithms for NGS Data

Algorithm	Pub Year	Citations	Host Instition	Category	Distinguishing Characteristic	URL
SIFT	2003	>1200	JCVI (UW)	Untrained	Popular, broadly applicable and intuitive method to identify functional mutations.	sift.jcvi.org
PolyPhen-2	2010	>1000	Harvard/BWH	Trained	Provides two scores (HumDiv and HumVar) for applications to complex and Mendelian disease, respectively.	genetics.bwh.harvard. edu/pph2
MutationAssessor	2011	57	MSKCC	Untrained	Considers amino acid conservation in protein subfamilies to refine important functional regions. Interactive user interface.	mutationassessor.org
MutationTaster	2010	199	Charite-Berlin	Trained	Native support for DNA (rather than amino acid) variant analysis. Allows online submission of VCF files.	mutationtaster.org
FATHMM	2013	NA	University of Bristol	Trained (weighted)	Uses HMM method (rather than BLAST) to create MSA. Weighted extensions for human disease and cancer analysis.	fathmm.biocompute. org.uk

Cautions on Usage

- The common belief is that variants called damaging by multiple algorithms are most likely to have true disease causing potential. (Although this is not always true.)
- Published comparisons aren't exhaustive, and usually focus on prediction performance for detecting a particular category of mutations.
- Each prediction tool has its own strengths and weaknesses and may carry certain biases based on the authors' own research interests.
- All of the algorithms generally perform well for distinguishing between known damaging variants and known neutral variants.
- False positive rate can be high when the methods are applied to a broad range of variants of unknown significance.

