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ABSTRACT

Genome-wide association study (GWAS) technology has been a primary method for 
identifying the genes responsible for diseases and other traits for the past 10 years. 
Over 2,000 human GWAS reports now appear in the scientific journals. The technology 
is continuing to improve, and has recently become accessible to researchers studying 
a wide variety of animals, plants and model organisms. Here, we present an overview 
of GWAS concepts: the underlying biology, the origins of the method, and the primary 
components of a GWAS experiment.
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1. Introduction

The science of genome-wide association studies (GWAS) emerged about a 
decade ago as a powerful scientific tool to identify genes associated with the 
outward traits of an organism. GWAS has been developed as a primary method 
for the identification of disease susceptibility genes in humans. More recently, 
GWAS technology has experienced rapid growth in non-human applications, 
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particularly in the burgeoning field of agrigenomics1. High-throughput 
genotyping arrays are now available for numerous animals and crop species, 
enabling scientists and plant and animal breeders to improve breeding programs 
and food production through genetics. As more researchers are moving into this 
field, we would like to share some of our experience and give an overview of 
the key concepts underlying GWAS.

2. The biology of GWAS

GWAS was initially developed to study the human genome. The human genome 
is a sequence of more than three billion DNA bases that can be represented by 
one of four letters: A, C, G or T. Much of the genome sequence is identical or 
highly conserved across the human population, but every person’s genome is 
unique. A given person’s genome sequence is likely to differ from the standard 
human reference genome at more than three million positions2. New mutations 
are introduced to the genome with every passing generation, and there are 
many old mutations that are now widely observed among all populations. 
These common mutations are generally called variants or polymorphisms.

The most common type of variants is the single-nucleotide polymorphism 
(SNP) which describes changes to an individual DNA base. The different forms 
of the same gene containing variable SNPs within the same site(s) are typically 
called alleles. GWAS methods are chiefly concerned with determining alleles 
associated with various SNPs in each study subject, and making statistical 
comparisons to identify SNPs or genes associated with a particular trait. If 
a certain allele is more common among individuals with disease than other 
healthy ones, this is interpreted as evidence that this allele or perhaps another 
nearby variant may cause the disease or at least increase the risk of disease.

Most SNPs result from one historical mutation event3. Because of this 
ancestry, each new allele is initially associated with the other alleles present 
on the particular chromosomal background where it arose. The specific set of 
alleles observed together on a single chromosome, or part of a chromosome, 
is called a haplotype. New haplotypes are formed by additional mutations 
or by chromosome recombination (also called crossing-over) during meiotic 
cell division. Haplotypes tend to be conserved, especially among individuals 
with recent shared ancestry (see Figure 1). Haplotype conservation is a very 
important factor for GWAS. The genetic variant that causes a particular trait 
may not be directly tested in the GWAS, but its signature may still be evident 
through the association of SNPs occurring within the same haplotype (see 
Figure  2). The nonrandom co‑occurrence of alleles within a chromosome 
or haplotype is called linkage disequilibrium, or LD. The degree of LD 
in a population is shaped by selection, recombination rate, mutation rate, 
consanguinity and other factors.
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Figure 1	 Haplotypes and recombination. This figure shows a small region of human 
chromosome 19. Genes and chromosome physical map coordinates are shown in the 
middle. The line tracing at the top shows the recombination rate determined from HapMap 
data – the peaks represent “hotspot” locations for meiotic recombination. The triangular 
plot in the lower section illustrates linkage disequilibrium (LD) patterns among SNPs in 
the region, with strong LD shown in red. LD measurements are based on genotypes from 
649 individuals of European ancestry. Note that high LD is confined to regions of minimal 
historic recombination, and does not extend across the recombination hotspots.

Figure 2	 Genotypes and haplotypes. This illustration depicts four SNP loci in the genomes 
of three subjects. Each subject has two haplotypes, corresponding to the two copies of each 
chromosome typically present in human cells. Suppose that the C allele at SNP‑2 causes 
a certain trait, but that SNP is not genotyped. The G allele at SNP‑3 always occurs on the 
same haplotype with the causal allele, and if genotyped may serve as a proxy for the causal 
allele in GWAS tests. Further inspection shows that the causal allele always occurs on the 
A – C – G – A haplotype, and may also be detected using haplotype association testing.
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3. The origins of GWAS

GWAS became possible as the result of several scientific advances early in the 
21st century. The completion of the Human Genome Project greatly improved 
our knowledge of the human genome and provided a much better context for the 
study of genetic variants4. The International HapMap project, which completed 
its first phase in 2005, conducted an unprecedented SNP discovery initiative 
and provided the first detailed human haplotype and LD maps5. These scientific 
efforts made it possible to identify relatively small numbers of SNPs capable of 
representing most of the common variation in the human genome. The GWAS 
era was born as biotechnology companies including Affymetrix, Illumina and 
Perlegen launched competing platforms to simultaneously genotype hundreds 
of thousands of SNPs.

The National Human Genome Research Institute and the European 
Bioinformatics Institute (NHGRI-EBI) GWAS Catalog6 recognise a 2005 
analysis of age-related macular degeneration (AMD) as the first GWAS study. 
This study analysed about 100,000 SNPs in just 146 subjects, and identified 
the cfh gene as a major AMD risk factor7. Since then, GWAS has grown to 
produce hundreds of published reports each year. The volume of published 
human GWAS studies has plateaued in recent years, but the average size of 
the study cohorts continues to grow (Table 1). The largest GWAS studies today 
may include over 100,000 subjects.

Table 1	 Growth of GWAS

Year

Primary GWAS cohort size Replication cohort size, if used

No. of 
studies

Mean of 
genotyped 
subjects

Median of 
genotyped 
subjects

No. of 
studies

Mean of 
genotyped 
subjects

Median of 
genotyped 
subjects

2005 2 738 738 1 664 664
2006 8 862 821 5 3816 1584
2007 89 2454 1094 63 5957 2519
2008 147 5100 1983 114 9619 4981
2009 235 5748 1984 182 8060 3311
2010 330 7360 2383 223 10733 3835
2011 390 6881 2643 279 9390 3491
2012 382 7575 2662 256 9811 4000
2013 376 8708 2243 252 11276 3609

This table shows the number of unique human GWAS papers published per year from 2005 
to 2013 according to the NHGRI-EBI GWAS catalog, together with the mean and median 
number of genotyped subjects analysed. The number of those reports that included an 
independent replication cohort is also shown, together with the mean and median number 
of genotyped samples analysed in the replication stage.
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4. The practice of GWAS

GWAS studies can be designed to assess the genetic determinants of almost any 
qualitative or quantitative trait. Several issues must be considered in GWAS 
study design, including the selection of a genotyping platform, sample size and 
collection, statistical analysis plans, statistical power, correction for multiple 
testing and population structure.

Genotype data for GWAS are usually produced with microarray technology 
allowing the detection of polymorphisms within a population. Microarrays 
involve three basic principles:

1.		 The array contains immobilised allele-specific oligonucleotide probes, 
which are short pieces of synthesised DNA complementary to the 
sequence of the target DNA.

2.		 Fragmented nucleic acid sequences of the target, labelled with fluorescent 
dyes.

3.		 A detection system that records and interprets hybridisation signals 
measuring essentially genetic similarity.

There are many different microarrays or “chips” available for both human 
and non-human applications. Some chips are designed to test as many SNPs 
as practically possible – currently up to about five million. Some chips are 
specifically designed to test SNPs in coding regions of genes, which make 
up about 2% of the genome. Other chips may test relatively small numbers 
of SNPs that have been carefully selected to efficiently represent worldwide 
haplotype diversity. Some chips are designed for specific ethnic groups or 
may be enriched with SNPs from genes implicated in particular diseases. In 
selecting a genotyping chip, it is important to consider the goals of the current 
project, compatibility with data from past or planned future studies, and the 
budget available.

Figure 3 Example Manhattan Plot. GWAS results are often visualised by plotting P‑values 
on a logarithmic scale. The values are plotted in linear order based on the chromosomal 
locations of the SNPs. This type of figure is commonly called a “Manhattan Plot,” alluding 
to its similarity with a city skyline. In the example above, the most significant SNP in the 
GWAS is on chromosome 6, with the highest – log10 P‑value of 6.68 in the plot.

http://www.scienceprogress.co.uk


Andreas Scherer and G. Bryce Christensen64

The next endeavour required for an effective GWAS study is the collection 
and recording of the desired phenotype, which can be quantitative (integer or 
real-valued) or dichotomous (case–control). Quantitative traits can provide 
more statistical power to show a genetic effect, but the case–control study 
design can also be effective in identifying multiple genes associated with the 
phenotype. We can see examples of each in the literature8 – 10

The statistical analysis of genome-wide association can begin once 
samples have been collected and genotyped. The process begins with a 
thorough quality control analysis to confirm accuracy of the genotype data11. A 
statistical hypothesis test is performed for each SNP, with the null hypothesis 
of no association with the phenotype. There are a number of association tests 
available depending on which type of trait is being tested. Quantitative traits are 
generally analysed using linear regression approaches with the assumptions that 
the trait is normally distributed, variance within each group is the same, and the 
groups are independent. Popular analyses include ANOVA and GLM. Binary 
traits are commonly analysed using logistic regression, or tests such as a χ2 or 
Fisher’s Exact Test; logistic regression is popular because it allows adjustment 
for other covariates12. Specialised tests are available for study designs with 
family-based collection13.

Figure  4 Statistical power in GWAS. Power was estimated using the PBAT22 Power 
Calculator implemented in Golden Helix SNP and Variation Suite (SVS)23. Both figures show 
the statistical power to detect a true association for a dichotomous trait with significance 
level P < 5e‑8, using an additive genetic model when the true mode of inheritance is also 
additive. Power is estimated using a simulation procedure for disease allele frequencies 
between 0.01 and 0.49. Power generally increases when the disease allele has higher 
frequency. The figure on the left shows the effect of increasing sample size when the effect 
size is held constant; OR1 (the odds ratio associated with having one copy of the disease 
allele versus no copies) is fixed at 1.5. The figure on the right shows the power difference to 
detect causal alleles with various effect sizes. The sample size in this figure is fixed at 1,000 
cases and 1,000 controls.
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Statistical power and multiple test correction are important and inseparable 
issues for GWAS. False positive associations are a great risk when testing large 
numbers of SNPs, so statistical evidence for association must be held to a high 
standard. The typical significance threshold used in human GWAS studies is 
P‑value less than 5e‑8, equivalent to a standard Bonferonni correction for one 
million independent tests14. Populations with greater genetic diversity, such as 
African populations, may require even greater stringency to determine that a 
test result is statistically significant. Very large sample sizes may be required to 
achieve such significance levels, especially for rare disease alleles and alleles 
with small effect sizes (Figure  4). Statistical power of GWAS is affected by 
many factors, some of which are beyond the investigator’s control. These factors 
include: complexity of the genetic architecture of the phenotype, frequency 
and effect size of the disease allele, accuracy of phenotypic measurements and 
homogeneity of the phenotype, and LD relationships between causal variants 
and genotyped SNPs15.

Figure 5 Principal Components Analysis. This figure shows the first (PC1) and second 
(PC2) principal components of the GWAS data for a group of samples with European 
ancestry. The samples are clearly stratified by ancestry and nationality. Samples are 
coloured according to ancestry and geography: CEU, Utah residents (CEPH) with northern 
and western European ancestry; FIN, Finnish in Finland; GBR, British in England and 
Scotland; IBS, Iberian population in Spain; TSI, Toscani in Italy.
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Standard GWAS test statistics assume that all samples in the analysis 
are unrelated and selected from a uniform, random-mating population. Any 
departure from this assumption can cause unexpected results, especially in 
large study cohorts (groups of subjects encountering a certain event during a 
particular time period). For example, if individuals of a certain ethnicity are 
overrepresented in the control group of an experiment, the significance of test 
results throughout the genome may be consistently inflated due to the unique 
genetic background of that ethnic group. Principal components analysis (PCA) 
can be used to stratify subjects based on genomic similarity, and is often used 
to assess population stratification in GWAS cohorts (Figure 5). It is a common 
practice to adjust GWAS tests for principal components in order to account for 
the structure of the population. An alternative to PCA-based correction is to 
account for pairwise allele sharing among all study subjects using mixed linear 
model (MLM) regression16. MLM methods such as EMMAX17 and GEMMA18 
effectively account for population structure in both human and agricultural 
populations.

5. Beyond GWAS

GWAS is sometimes called a “hypothesis-generating” process19, as it is 
often the first step toward understanding the genetic architecture of traits. A 
successful GWAS will result in one or many SNPs found to be associated with 
the trait of interest. Researchers may then evaluate the functional consequences 
of each associated SNP, examine other variants in LD with that SNP, study the 
function of the gene where the SNP resides, and study the biological pathways 
in which the gene participates. Indeed, a great number of experiments may be 
required to fully understand the results of a GWAS. As the biology of the trait 
is elucidated, it may be possible to develop assays to test for disease risk or to 
improve disease treatment and prevention programs.

The first decade of GWAS provided many success stories, but debates 
continue about how to improve GWAS20. Many approaches have been proposed 
to increase statistical power, reduce false-negative rates, and incorporate 
biological context in GWAS results21. The coming years are likely to see 
continued innovations in both technology and analytic methods to make GWAS 
an even more effective and efficient method to study the underlying biology of 
diseases and other traits.
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