

A Walk Through GWAS

January 20th, 2016

Jami Bartole Senior Field Application Scientist

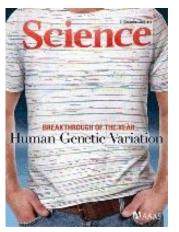
Questions during the presentation

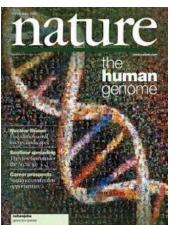
Use the Questions pane in your GoToWebinar window

 Questi 	ons	2	×
⊠ Show	Answered Questions	s	
X	Question	Asker	
Ask Ques	tions Here	-	1
Send Pri	vately Send to		/

Golden Helix – Who We Are

Golden Helix is a global bioinformatics company founded in 1998.

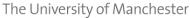



We are cited in over 900 peer-reviewed publications

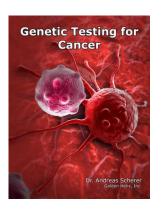
Our Customers

Over 200 organizations world wide, and thousands of users, trust our software.

Stanford University



SCHOOL of MEDICINE

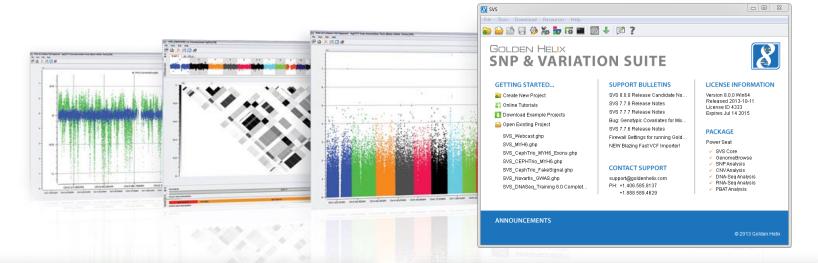

Golden Helix – Who We Are

When you choose a Golden Helix solution, you get more than just software

- REPUTATION
- TRUST
- EXPERIENCE

- INDUSTRY FOCUS
- THOUGHT LEADERSHIP
- COMMUNITY

- TRAINING
- SUPPORT
- RESPONSIVENESS



- TRANSPARENCY
- INNOVATION and SPEED
- CUSTOMIZATIONS

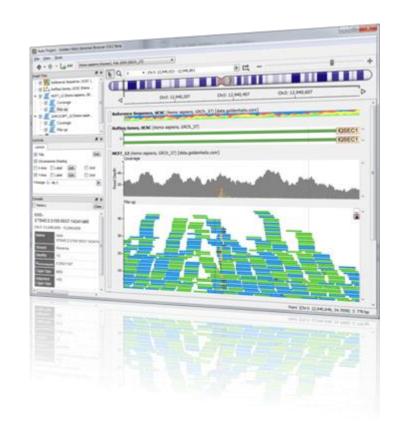
SNP & Variation Suite (SVS)

Core Features

- Powerful Data Management
- Rich Visualizations
- Robust Statistics
- Flexible

Applications

- Genotype Analysis
- DNA sequence analysis
- CNV Analysis
- RNA-seq differential expression



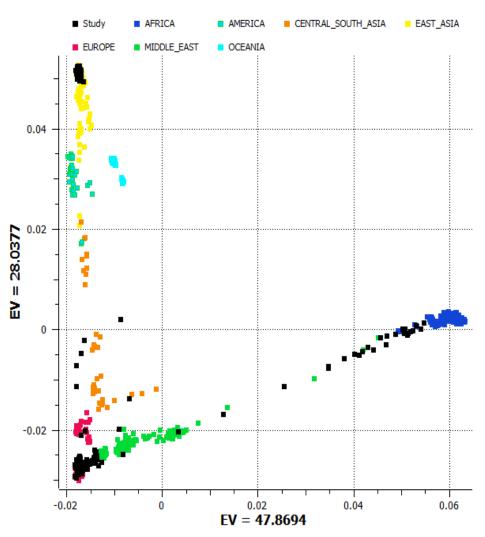
GenomeBrowse

- Powerful visualization software for DNA and RNA sequencing data
- Supports most standard bioinformatics file formats
- Fast and responsive for interactive analysis
- Intuitive controls
- Stream data from the cloud and from your own remote data servers

Approximate Agenda

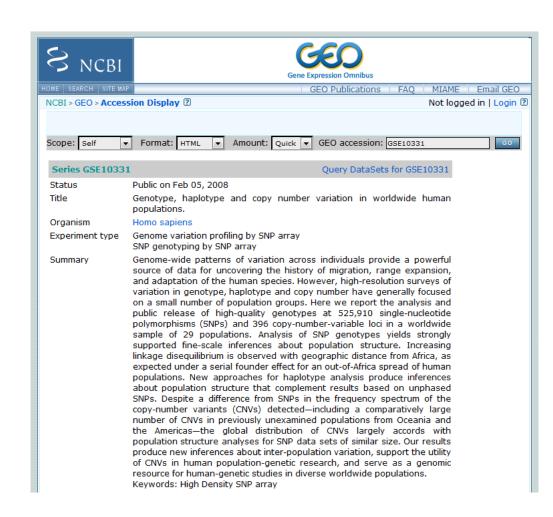
1 Background of GWAS

2 Explore Results from a GWAS Project


3 Population Stratification in Analysis

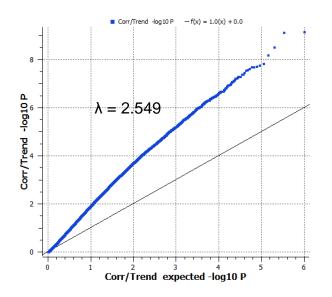
4 Q&A

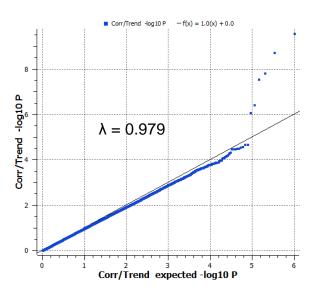
A brief background of GWAS

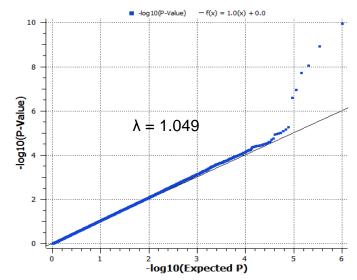

- First the naïve approaches: Trend Tests, Contingency Tables, Linear/Logistic Regression
- Batch Effects, Population
 Structure and sharing of controls may violate assumptions of the naïve approaches and result in confounding of results.
- Stratification effects are more pronounced with larger sample sizes.
- Non-independence of samples is especially problematic in agrigenomic applications.

Summary of GWAS Dataset

- 513 individuals
- 29 populations from the Human Genome Diversity Project (HGDP)
- Illumina Infinium
 HumanHap550
 Genotyping BeadChip
- Simulated Case/Control Phenotype







Q-Q Plots

Overview of Methods

Naïve GWAS

GWAS + Correcting for Population Stratification

Mixed Model Approach

Corr/Trend Test

 Quality Control of Samples and Markers

PCA Correction (Eigenstrat Price 2006)

- Direct correction of genotype and phenotype data
- Adding PCs as covariates to regression model

EMMAX (Kang 2010)

 Using the Genomic Relationship Matrix (IBD) to account for stratification

Summary

- Performed Basic Association Test
 - Verified contingency table counts
 http://goldenhelix.com/SNP_Variation/scripts/pages/FrequencyTable.html
 - Q-Q Plot to look for inflation of p-values
 http://goldenhelix.com/SNP_Variation/scripts/pages/CalculatePseudoLambda.html
- Examined workflow to determine reasons for inflation of p-values
 - Sample/Marker Statistics
 - Call Rate Histograms
 - Cryptic Relatedness through IBD
 - IBD Heat Maps
 - Population Stratification with PCA
 - PCA Plots (2D & 3D)
- Adjusted Analysis for Population Stratification
 - Using PCA from within Association Testing dialog
 - Using PCs as Covariates in Numeric Regression
 - Using Mixed Linear Model Analysis

Questions or more info:

- Email info@goldenhelix.com
- Request an evaluation of the software at <u>www.goldenhelix.com</u>
- Check out our abstract competition!

