BEAGLE Imputation in SVS for Human and Animal SNP Data

<mark>0???1?1?01</mark>1??1?0

<u>1???</u>1?1?011??1?0

<mark>0</mark>???1?1?011??1?0

<mark>1???1?1?</mark>011??1?0

January 11, 2017

Gabe Rudy VP Product & Engineering

3 Why BEAGLE and Value of BEAGLE in SVS

4 Live Demo and Questions

Questions?

Use the Questions pane in your GoToWebinar window

 Question 	ons	12 ×
Show /	Answered Questions	
х	Question	Asker
Ask Ques	tions Here	~
		×
	vately Send to Al	

F

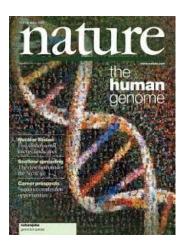
Golden Helix is a global bioinformatics company founded in 1998.

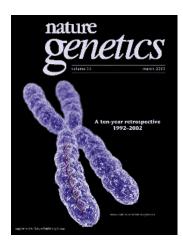
Filtering and Annotation Clinical Reports Pipeline: Run Workflows

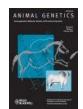
Variant Warehouse Centralized Annotations Hosted Reports Sharing and Integration GWAS Genomic Prediction Large-N-Population Studies RNA-Seq CNV-Analysis

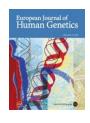
SNP &

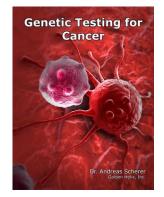
Over 300 customers globally






Cited in over 1000 peer-reviewed publications





When you choose a Golden Helix solution, you get more than just software

- REPUTATION
- TRUST
- EXPERIENCE

- INDUSTRY FOCUS
- THOUGHT LEADERSHIP
- COMMUNITY

- TRAINING
- SUPPORT
- RESPONSIVENESS

- TRANSPARENCY
- INNOVATION and SPEED
- CUSTOMIZATIONS

Why Imputation

Fill in Missing Genotypes

- Improve quality of GT calls

Harmonizing Arrays

 Facilitate meta-analyses that combine studies genotyped on different sets of variants

Increase Genotypes

- Increase the power and resolution of genetic association studies
- Find candidate susceptibility variants to guide fine-mapping

Typical imputation scenario

	0	0	1	11	0 0	1	1	0 0	0	11	1	
HapMap or	0	0	0	00	1 1	1	0	1 1	1	00	1	Reference
1,000 Genomes	1	1	1	11	0 0	0	1	00	0	00	0	haplotypes
	1	0	1	10	0 0	1	1	1 1	1	00	1	
←				-+-+-	+ +			-+-+-		-+		 •
	1	?	?	2 ?	? 0	?	?	??	0	1 ?	1	
	1	?	?	? 1	? 0	?	?	??	?	0 ?	0	
	0	?	?	? 1	? 1	?	?	??	1	0 ?	1	
Cases and	1	?	?	? 2	? 0	?	?	??	0	1 ?	1	Study
controls typed on SNP chip	?	?	?	? 2	0 ?	?	?	??	0	0 ?	0	genotypes
on SNP chip	1	?	?	? 1	? 1	?	?	??	1	0 ?	?	
	0	?	?	2 ?	<mark>?</mark> 0	?	?	??	0	1 ?	1	
	1	?	?	? 1	? 1	?	?	??	1	1 ?	2	

Evolution of Imputation Methods

IMPUTE

- June 2007

BEAGLE v1

- Nov 2007

BEAGLE v3

- Feb 2009

IMPUTE2

- June 2009

IMPUTE2 (v2.3)

- 2011 / 2013

BEAGLE v4

- V4.0 Dec 2015
- V 4.1 Jul 2016

A new multipoint method for genome-wide association studies by imputation of genotypes nature renetics

Jonathan Marchini^{1,2}, Bryan Howie^{1,2}, Simon Myers¹, Gil McVean¹ & Peter Donnelly¹

Rapid and Accurate Haplotype Phasing and Missing-Data Inference for Whole-Genome Association Studies By Use of Localized Haplotype Clustering

Sharon R. Browning* and Brian L. Browning*

A Unified Approach to Genotype Imputation and Haplotype-Phase Inference for Large Data Sets of Trios and Unrelated Individuals

IHG

Brian L. Browning^{1,*} and Sharon R. Browning¹

A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies PLOS GENETICS

Bryan N. Howie^{1ⁿ}, Peter Donnelly^{1,2}, Jonathan Marchini¹*

Genotype Imputation with Thousands of Genomes

Bryan Howie,^{*,1} Jonathan Marchini,^{*,1} and Matthew Stephens^{*,†} *Department of Human Genetics and [†]Department of Statistics, University of Chicago, Chicago, Illinois 60637, and [‡]Department of Statistics, University of Oxford, Oxford OX1 3TG, United Kingdom

Genotype Imputation with Millions of Reference Samples

Brian L. Browning^{1,2,*} and Sharon R. Browning²

Value of Integrated BEAGLE

Integrated and Supported

- Don't need to run command line tools
- Supported fully and integrates into the rest of your SVS analytics

Leverage SVS Data Management

- Import your SNP data from any source (PLINK, Illumina, Affy etc)
- Also can import VCF

Handles NGS Variants as Well as SNPs

- BEAGLE 4.1 only reads VCFs with strict formatting requirements

Error while running BEAGLE for genotype imputation

Error while running **BEAGLE** for genotype imputation I am trying to run **BEAGLE** 4.1 for an imputation run run. I have core exome chip **data** on variants of 20th chromosome in BED/BIM/FAM format, which I phased convert option in it. But, now when I try to run a **BEAGLE** imputation run by this: java -jar beagle.jar gt=test by hshabbeer.09

Phasing genotype per chromosomes in Beagle software

chromosomes in **Beagle** software I want to use **beagle** to phase my genotyped per chromosome, my **data** is in AB bgl missing=? out=Myrun, I am not getting phase **data** per chromosomes and I am also expecting the program by somakina

A: Background information and recommendations for phasing ASW whole genomes

You wouldn't need to re-phase the 1KG *data*, just tell *BEAGLE* to use it as a reference panel. by Zev.Kronenberg

Beagle 4.1 error : Possible data conversion issue

Beagle 4.1 error : Possible **data** conversion issue Hi, I have PLINK format **data** (PED/MAP) and I wanted to VCF so that I can input it in **BEAGLE** 4.1 to phase them, as **BEAGLE** only use VCF format. I wanted a trivial ran **beagle** (gt) on the input its giving me Java exceptions/errors. Its not a problem with **beagle** jar sample VCF format **data** downloaded from 1000Genomes. However, when I convert the **data** to VCF using PLINK PLINK and then use it as **BEAGLE** 4.1 input, then it doesn't like it. It'd be great if anyone can by aritra90

converting vcf to haploview with keep phasing

after haplotype phasing with *beagle* v4, now i have vcf (phased file *data*) file. but i don't know how phasing while converting. previous version of *beagle* software (v3.2) for haplotype inferring was good by goreishi

Phasing Data With Beagle

Phasing Data With Beagle Hey I need phased genotype data for another statistic I want to calculate and and I decided to phase my data with BEAGLE. Before even starting to phase I extracted with PLINK the can just phase this data set or hether youw ould recommend keeping the whole data set (all markers) but by Tim

BEAGLE 4.1 imputation

BEAGLE 4.1 imputation Hi all, I am new to the field of imputation. I am trying to use **BEAGLE** v4.1 to could be the target **data** for the imputation? 3. If I have a multiple target **data** sets, how can I do a a imputation of all of them with same reference **data** set at a time? 4. How to check the strand inconsistencies inconsistencies between reference and target **data**? If inconsistency occurs, how to make them consistent? Thank by cholingken

BioStars.org Questions on using BEAGLE

Strand Consistencies and SNPs vs Variants

- Arrays Genotypes use Platform-Specific Allele Encoding
 - Illumina and Affymetrix defined their own "referenceindependent" strand encodings
- Sometimes Can Keep A/B Encoding
 - Different Arrays from Same Vendor
- Sometimes Have Mapping to Human Reference
- Otherwise...

Unsort		G 43467	G 43468	G 43469	
Map Sample		SNP_A-8427496	SNP_A-2179932	SNP_A-2207425	
C	hromosome	1	1	1 164314302	
	Position	164309029	164312048		
	Cytoband	q24.1	q24.1	q24.1	
d	bSNP RS ID	rs6672167	rs7524575	rs10800181	
Ass	sociated Gene	LOC284685	LOC284685	LOC284685	
	Strand	-	+	-	
Strand Versus dbSNP		reverse	same	reverse	
Refer	ence Alleles A/B	[A/T]	[A/G]	[C/T]	
-	Top Alleles	[T/A]	[A/G]	[G/A]	
Bo	ottom Alleles	[A/T]	[T/C]	[C/T]	
775	NA19722	A_A	A_B	A_B	
776	NA19723	A_A	B_B	B_B	
777	NA19724	A_A	A_B	A_B	
778	NA19725	A_A	A_B	B_B	
779	NA19726	A_A	B_B	B_B	

Recode Genotype Column Data by Allele Name						
Recoue Genotype Column Data by Allele Name						
O Flip DNA strands for AGCT encoded genotypes						
Transcode AB to AGCT encoding using mapping:						
Marker map field in format 'A/B':	Reference Alleles A/B					
O Transcode using allele mapping:						
Marker map field in format 'A:G B:T'	Chromosome 🔻					

Recode SNPs to Variants

F

- Select the RSID Map Field
- Select a dbSNP Annotation Track
- For each SNP we:
 - Look up the SNP
 - Pull the allele frequency if present
 - Match your variants to the allele frequency, or the Major => Ref
 - Recode alleles (AB => AGCT)
- Note this allows "lifting over" an older NCBI36 (hg18) snp data to GRCh37 (hg19)
 - Also provides the Reference alleles required DNA-Seq analysis
 - Take advantage of new OMIM/CADD/OncoMD premium annotations

Recode SNPs to Variants	_	o x
rsID Marker Map Field:		
dbSNP RS ID		-
Variant Source:		
🕍 dbSNP 147, NCBI		Select Track
Create New Spreadsheet as	Child of:	
Project root	O Current spr	readsheet
	Ōĸ	Cancel

Unsort		G 12		Unsort		G 11	
Мар	1ap sub SNP_A-4290489		1	Мар	Markers	SNP_A-4290489	
	Chromosome	22		Chromosome		22	
	Position	15268900			Position	15268900	
	Cytoband	q11.1			Reference	G	
	dbSNP RS ID	rs5748616			Alternates	С	
	Associated Gene	LOC100128190		Cytoband dbSNP RS ID		q11.1	
	Strand	-				rs5748616	
	Strand Versus dbSNP	reverse		Associated Gene		LOC100128190	
1	GSM233256_GSM233257	B_B		1	GSM233256_GSM233257	C_C	
2	GSM233258_GSM233259	B_B	/	2	GSM233258_GSM233259	C_C	
3	GSM233260_GSM233261	B_B		3	GSM233260_GSM233261	C_C	
4	GSM233262_GSM233263	B_B		4	GSM233262_GSM233263	C_C	
5	GSM233264_GSM233265	B_B		5	GSM233264_GSM233265	C_C	
6	GSM233266_GSM233267	A_B		6	GSM233266_GSM233267	G_C	
7	GSM233268_GSM233269	A_B		7	GSM233268_GSM233269	G_C	

Creating a Reference Panel

C

- Saves to local ImputeRefPanels folder
 - Saves as TSF, relocatable
 - Uses current Project Genome

Allele Encoding

- Recode to Reference/Alternate of reference sequence if possible
- If within same platform, alleles are matched alphabetically between reference and target samples

Imputed Data will use:

- Column Headers
- Optional Map Fields

Create Imputation F	Reference Panel	_	- 🗆	×				
565 samples and 131059 markers								
Options Advanced								
Reference Panel Out	out Options							
Folder: ImputationRe	<u>efPanels</u>	Reset	Browse	····				
Base Name:	500К НарМар							
Project Genome:	Homo sapiens (Human), G	RCh37 hg19 (Fe	b 2009)					
Allele Encoding:	Alphabetically (A/B)	O Referen	ce / Alterna	ates				
Included Map Fields:	Cytoband dbSNP RS ID Associated Gene Strand Strand Versus dbSNP Reference Alleles A/B Top Alleles Bottom Alleles Flank Probe Count							
Number of concurre	Chromosome mosome enables parrallele ent runners (cores):			Cancel				

Running Imputation

- Select from detected references
- Detects Allele Encoding
- Impute Regionally
 - For targeted regions
- Optionally output GT Probabilities
 - Also drop low-prop GTs

Advanced

- BEAGLE Parameters
- Trade off time vs accuracy

	Ge	notype Imputation	with BEAGLE			_		×			
350	1500 samples and 388709 markers										
C	Options Advanced										
	Reference Panel										
	Folder: ImputationRefPanels Browse										
	Pr	oject Genome Filter:	Homo sapiens (Human), G	RCh37 g1k (Feb 20	09)						
			Name	# Samples	# Markers	Modified	romosom				
	1	chr22		2504	?		22				
	2	Small Panel		181	1355	2017-01-06	22				
	Only impute to ref markers within 1000000 Output Output										
			RLMM WTCCC SNP - After Q		0.0						
	Sp	readsheet as child of		ect Root	Οa	urrent Spreadsheet					
	 Output Spreadsheet with per-Genotype Probabilities Set genotype to missing if genotype probability is less than 0.85 Split Output by Chromosome Outputting by chromosome enables parrallele processing. Number of concurrent runners (cores): 										
	Help Restore Options▼ Save Options▼										

85 Million Variants in Phase3

- 2504 Samples
- Extremely expensive to phase
- BEAGLE v4 Pre-Phased
 - Per-Chr VCF files
 - Place in ImputeRefPanels folder
- Use Regional Window!
 - Use option

GOLDEN HELX

Accelerating the Quest for Significant

chr1.1kg.phase3.v5a.vcf.gz
chr1.1kg.phase3.v5a.vcf.gz.tbi
chr2.1kg.phase3.v5a.vcf.gz
chr2.1kg.phase3.v5a.vcf.gz.tbi
chr3.1kg.phase3.v5a.vcf.gz
chr3.1kg.phase3.v5a.vcf.gz.tbi
chr4.1kg.phase3.v5a.vcf.gz
chr4.1kg.phase3.v5a.vcf.gz.tbi
chr5.1kg.phase3.v5a.vcf.gz
chr5.1kg.phase3.v5a.vcf.gz.tbi
chr6.1kg.phase3.v5a.vcf.gz
chr6.1kg.phase3.v5a.vcf.gz.tbi
chr7.1kg.phase3.v5a.vcf.gz
chr7.1kg.phase3.v5a.vcf.gz.tbi
chr8.1kg.phase3.v5a.vcf.gz
chr8.1kg.phase3.v5a.vcf.gz.tbi
chr9.1kg.phase3.v5a.vcf.gz
chr9.1kg.phase3.v5a.vcf.gz.tbi
chr10.1kg.phase3.v5a.vcf.gz
chr10.1kg.phase3.v5a.vcf.gz.tbi
chr11.1kg.phase3.v5a.vcf.gz
chr11.1kg.phase3.v5a.vcf.gz.tbi
chr12.1kg.phase3.v5a.vcf.gz
chr12.1kg.phase3.v5a.vcf.gz.tbi

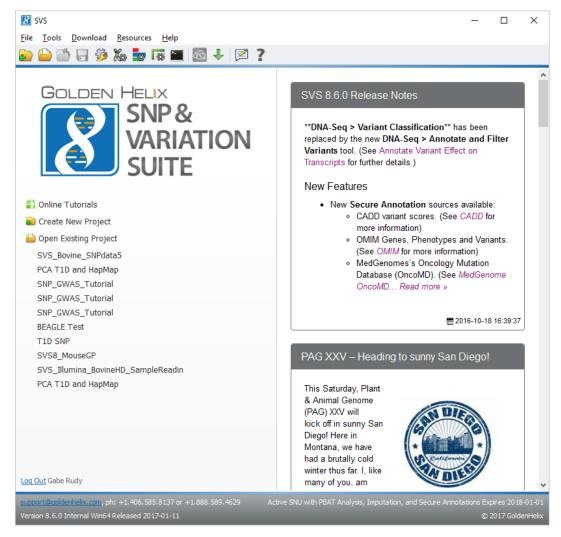
 \sim

Name

Date modified	Туре	Size
1/5/2017 2:03 PM	GZ File	737,074 KB
1/5/2017 2:00 PM	TBI File	205 KB
1/5/2017 2:04 PM	GZ File	788,570 KB
1/5/2017 2:00 PM	TBI File	217 KB
1/5/2017 2:04 PM	GZ File	671,966 KB
1/5/2017 2:01 PM	TBI File	179 KB
1/5/2017 2:04 PM	GZ File	690,066 KB
1/5/2017 2:01 PM	TBI File	173 KB
1/5/2017 2:47 PM	GZ File	599,745 KB
1/5/2017 2:44 PM	TBI File	162 KB
1/5/2017 2:49 PM	GZ File	624,556 KB
1/5/2017 2:44 PM	TBI File	154 KB
1/5/2017 2:49 PM	GZ File	557,489 KB
1/5/2017 2:45 PM	TBI File	143 KB
1/5/2017 2:49 PM	GZ File	520,870 KB
1/5/2017 2:45 PM	TBI File	131 KB
1/5/2017 2:49 PM	GZ File	408,758 KB
1/5/2017 2:45 PM	TBI File	109 KB
1/5/2017 2:49 PM	GZ File	475,940 KB
1/5/2017 2:45 PM	TBI File	121 KB
1/5/2017 3:03 PM	GZ File	466,314 KB
1/5/2017 3:00 PM	TBI File	121 KB
1/5/2017 3:03 PM	GZ File	453,060 KB
1/5/2017 3:00 PM	TBI File	120 KB

Example Workflows

- GWAS Follow Up
- Harmonize Cases and Controls
- Animal Genomics


GOLDEN HELIX SNP & VARIATION SUITE

[Demonstration]

Upcoming in SVS 8.7

- Recode SNPs to Variants
- BEAGLE Genotype Imputation
- PhoRank Gene Ranking
 - Phenotypes are linked to genes through HPO and GO ontologies
- Various Polish Items

Questions or more info:

- Email info@goldenhelix.com
- Request an evaluation of the software at <u>www.goldenhelix.com</u>

