
CNV Analysis in VarSeq – A User's Perspective

April 19, 2017

Dr. Nathan Fortier Senior Software Engineer & Field Application Scientist

Agenda

1 Overview Golden Helix

2 CNV Analysis – A User's Perspective

3 Method and Demo

4 Roadmap

Questions during the presentation

Use the Questions pane in your GoToWebinar window

Questions		Ľ ×
⊠ Show	Answered Questions	
х	Question	Asker
Ask Ouse	etione Here	
Ask Ques	stions Here	^
Ask Ques	stions Here	^

Golden Helix – Who We Are

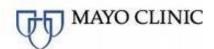
Golden Helix is a global bioinformatics company founded in 1998.

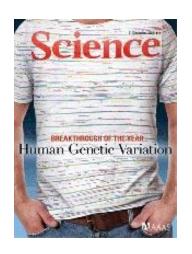
Filtering and Annotation
Single Sample CNV-Analysis
Clinical Reports
Pipeline: Run Workflows

Variant Warehouse Centralized Annotations Hosted Reports Sharing and Integration

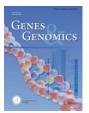
GWAS
Genomic Prediction
Large-N-Population Studies
RNA-Seq
Large-N CNV-Analysis

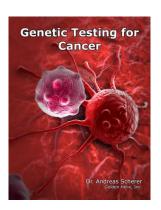
Over 300 customers globally





Cited in over 1000 peer-reviewed publications




Golden Helix – Who We Are

When you choose a Golden Helix solution, you get more than just software

- REPUTATION
- TRUST
- EXPERIENCE

- INDUSTRY FOCUS
- THOUGHT LEADERSHIP
- COMMUNITY

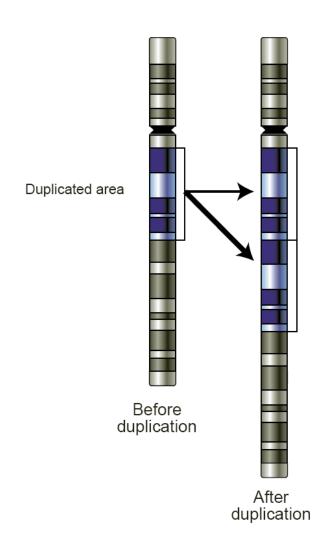
- TRAINING
- SUPPORT
- RESPONSIVENESS

- TRANSPARENCY
- INNOVATION and SPEED
- CUSTOMIZATIONS

CNVs in Clinical Testing

- Critical evidence needed for many genetic tests
- Common driver specific cancers, causal hereditary variation
 - Chromosome 13 deletion common in melanoma
 - EGFR Exon 19 deletion common in lung cancer
 - PIK3CA Amplification in breast cancer
 - PTEN gross deletion/duplication ASD, *PTEN* hamartoma tumor syndrome (PHTS)
- Today we will look at CNV calling on Tumor/Normal data
 - We demonstrate CNVs calling on Melanoma tumor samples
 - Normal controls are used for normalization

CNV Detection



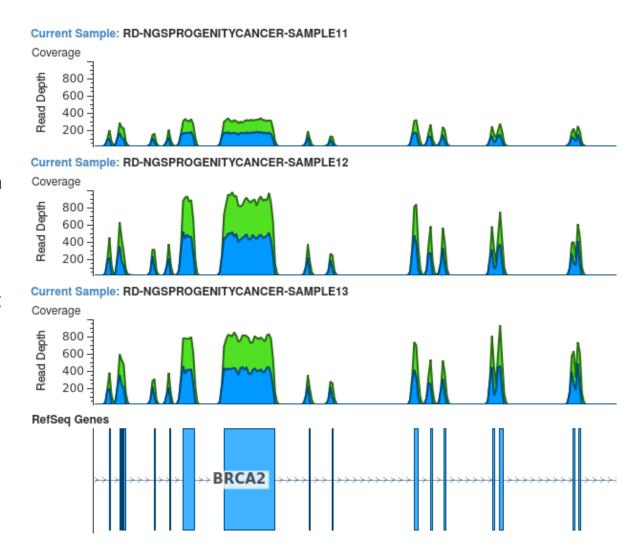
Chromosomal microarray

- Current best practice
- Slow
- Additional expense
- Only detects large events

CNV calling from NGS data

- Calls from existing coverage data
- Detects small single-exon events
- Provides faster results

CNV Detection via NGS

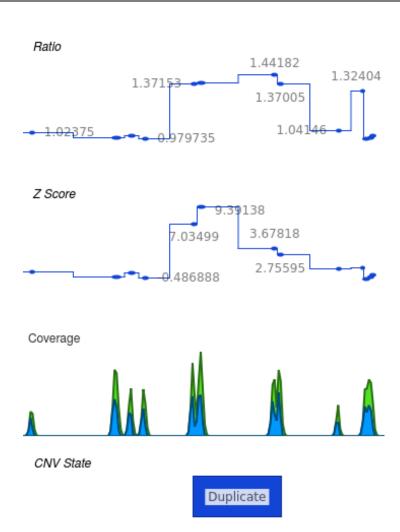

CNVs are called from coverage data

Challenges

- Coverage varies between samples
- Coverage fluctuates between targets
- Systematic biases impact coverage

Solutions

- Data Normalization
- Reference Sample Comparison


CNV calling in VarSeq

Reference samples used for normalization

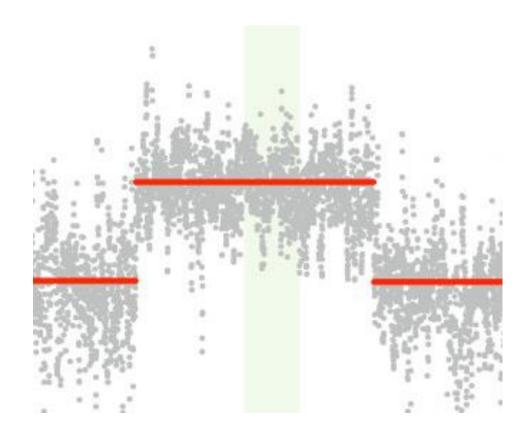
Metrics

- Z-score: number of standard deviations from reference sample mean
- Ratio: sample coverage divided by reference sample mean
- VAF: Variant Allele Frequency
- Probabilistic model used to call CNVs

VAF

VAF provides supporting evidence

- Values other than 0 or 1 are evidence against het. deletions
- Values of 2/3 and 1/3 are evidence for duplications



Segmentation

- Metrics are noisy over large regions
- Outliers cause large events to be called as many small events
- Addressed using CNAM optimal segmentation

Segmentation

First Pass

- Group targets into large megabase sized bins
- Segment these bins to obtain large cytogenetic events
- Perform fine tuning on the edges of the events

Second Pass

- Identify regions containing many small events
- Perform segmentation these regions
- Merge events that share a segmented region

QC Flags

Low quality events can be flagged if

- Event targets have low coverage
- There is high variation between samples at event targets
- Event cannot be differentiated from noise at a region

Samples can be flagged if

- The sample does not match the references
- The sample has extremely low coverage
- There is high variance across the target regions

Reference Samples

- Matched references are chosen for each sample
- Samples with lowest percent difference are chosen
- Performance affected if controls don't have matching coverage profile
- Samples are flagged if the average percent difference is above 20%

Requirements

100x Coverage

Reference samples

- Recommend at least 30 references
- Minimum of 10
- From same platform and library preparation
- Gender matched references required for Non-autosomal calls

Performance

Performance on Gene Panels:

- Sensitivity: 98.8 %

- Specificity: 99.9 %

- Precision: 99.6 %

 We are currently evaluating performance on Tumor/Normal exomes

Tumor Normal Workflow

Create Reference Sample Project

Compute Reference Sample Coverage

Call CNVs on Reference Samples

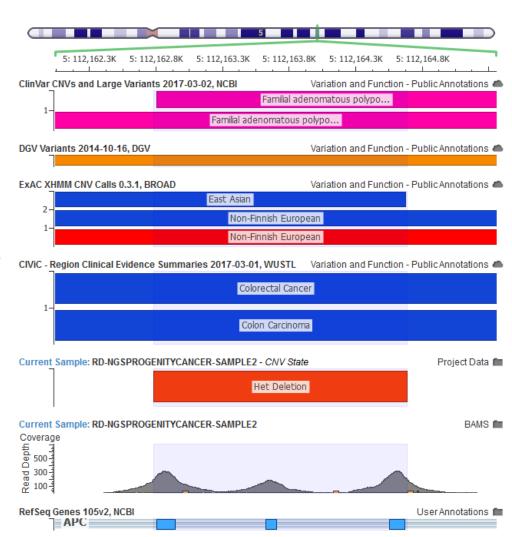
Create Tumor Sample Project

Compute Tumor Sample Coverage

Call CNVs on Tumor Samples

VarSeq Demonstration

Roadmap


Whole Genome Analysis

CNV Reporting

Able to add to CNVs to VSReport

CNV Annotations

- CNV annotations currently available
- Next release integrate regional/overlap annotation of CNVs
- Allow for more advanced filtering and interpretation workflows

Questions or more info:

- Email info@goldenhelix.com
- Request an evaluation of the software at <u>www.goldenhelix.com</u>

