

Genomic Prediction Methods

Darby Kammeraad - Field Application Scientist

Top 10 Analytics Solution Providers

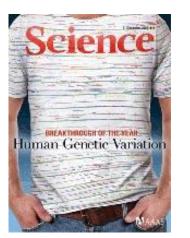
Hype Cycle for Life sciences

F

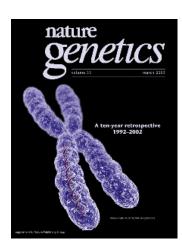
Golden Helix is a global bioinformatics company founded in 1998.

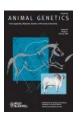
Variant Calling Filtering and Annotation Clinical Reports CNV Analysis Pipeline: Run Workflows

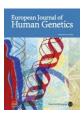
Variant Warehouse Centralized Annotations Hosted Reports Sharing and Integration



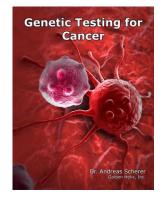
GWAS Genomic Prediction Large-N-Population Studies RNA-Seq Large-N CNV-Analysis




Cited in over 1100 peer-reviewed publications



Over 350 customers globally



When you choose a Golden Helix solution, you get more than just software

- REPUTATION
- TRUST
- EXPERIENCE

- INDUSTRY FOCUS
- THOUGHT LEADERSHIP
- COMMUNITY

- TRAINING
- SUPPORT
- RESPONSIVENESS

- INNOVATION and SPEED
- CUSTOMIZATIONS

SNP & Variation Suite (SVS)

- 0 - 13

8

LICENSE INFORMATION

Version 8.0.0 Win64 Released 2013-10-11 License ID 4333

Expires Jul 14 2015

PACKAGE

Power Seat

SVS Core

GenomeBrowse

RNA-Seq Analysis

SNP Analysis

CNV Analysis DNA-Seq Analysis

PBAT Analysis

Core Features

- Powerful Data Management
- Rich Visualizations
- Robust Statistics
- Flexible

Applications

- Genotype Analysis
- DNA sequence analysis
- CNV Analysis
- RNA-seq differential expression

2 Example project in SVS

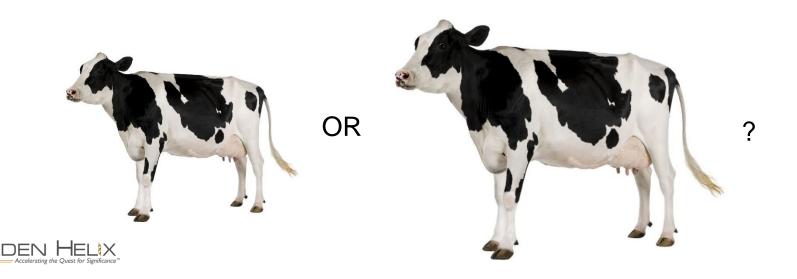
3 Use Case – Beef palatability

Background

- Genomic prediction is a key focus for agrigenomics
- Growing world population requires improved food production
 - 3B in 1960
 - 7.5B today
 - 9.7B projected in 2050

Source: Wikipedia			
Country	Population 2010	Population 1990	Growth (%) 1990–2010
World	6,895,889,000	5,306,425,000	30.0%
China	1,341,335,000	1,145,195,000	17.1%
India	1,224,614,000	873,785,000	40.2%
United States	310,384,000	253,339,000	22.5%
Indonesia	239,871,000	184,346,000	30.1%
Brazil	194,946,000	149,650,000	30.3%
Pakistan	173,593,000	111,845,000	55.3%
Nigeria	158,423,000	97,552,000	62.4%
Bangladesh	148,692,000	105,256,000	41.3%
Russia	142,958,000	148,244,000	-3.6%
Japan	128,057,000	122,251,000	4.7%

Calculate breeding value (gEBV) for all subjects in a population

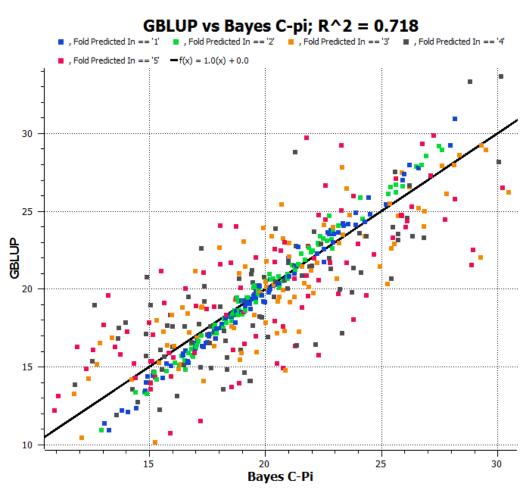

- May be more accurate than breeding selection based only on pedigree and trait data

Predict breeding values for subjects with unknown phenotypes

- May avoid costly and lengthy field trials
- May not always be possible to measure the phenotype

Identify genetic markers with best predictive power for a trait

- Assist in development of predictive tests and other assays



Genomic Prediction Methods Available in SVS

F

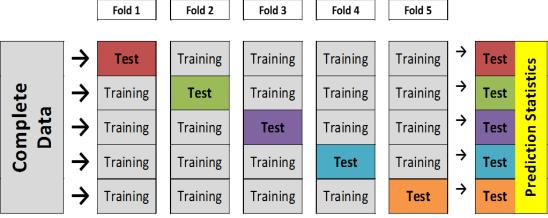
3 methods available

- GBLUP (Genomic Best Linear Unbiased Predictor)
- Bayes C
- Bayes C-pi

- Assumes all loci contribute to phenotype
- Incorporates genomic relationship matrix in mixed linear model framework to account for relatedness among samples
- Calculates allele substitution effect for each SNP
- Computes estimated breeding values and predicted phenotypes for all samples

Also calculates:

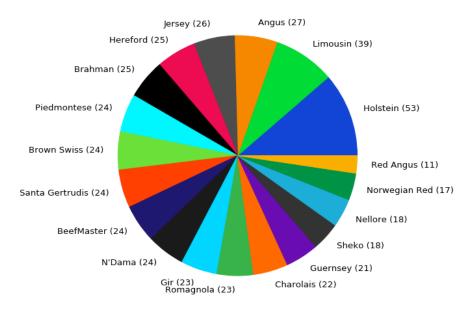
- Pseudo-heritability of trait
- Genetic component of trait variance
- Error component of trait variance
- New GCTA methods (correct for environmental interactions)
 - Yang J, et al (2011) 'GCTA: A Tool for Genome-wide Complex Trait Analysis'. Am J Hum Genet 88, pp. 76-82.



- Bayesian methods predict effects of loci together with parameters required to define probability distribution over effects
- Gibbs sampling Markov Chain Montey Carlo used to obtain parameter estimates
- The π (pi) parameter is the prior probability that any SNP will have no effect.
- Pi is fixed in Bayes C, Bayes C Pi is considered unknown and allowed to vary
- Both methods return allele substitution effect, breeding value, other parameters of final model
- SVS implementation incorporates genomic relationship matrix

K-Fold Cross-Validation

- Build a model that can be applied to new genetic data to predict a phenotype
- Cross Validation makes it possible to assess the performance built from a given reference/training dataset.
- Can be used with GBLUP, Bayes C, Bayes C-pi
- Requires all samples have a phenotype value
- Can include covariates



Simulated Cattle Data

354 Bos taurus cattle from Bovine HapMap project

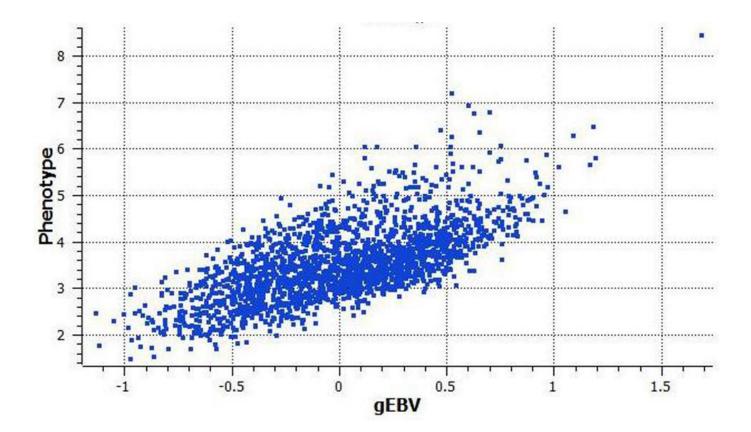
- 300 samples: training set
- 54 samples: validation set (no phenotypes)
- Illumina 50k genotypes

Use Case – Improving Beef Quality

Dr. Raluca Mateescu

- Department of Animal Sciences at University of Florida
- Journal of Animal Science 90, 4248-4255 (2012)
 - Link to slides <u>http://goldenhelix.com/media/pdfs/webcasts/Golde</u> <u>nHelix_July2015_Handout.pdf</u>
 - Link to webcast

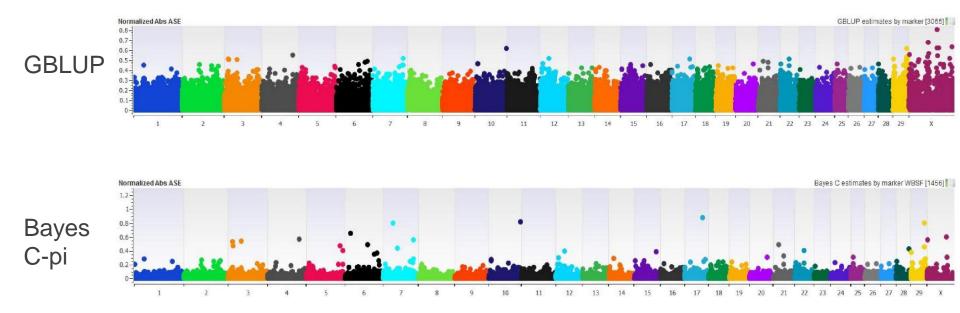
https://www.youtube.com/watch?v=e6Czycr_DnE


- Develop tools to select for:
 - Nutritious & tasty beef
 - WB-Steak Shear Force
 - Tenderness
 - Juiciness
 - Connective tissue
 - Beef Flavor
 - Improved production

Use Case – Output from GBLUP

Correlations for Shear Force

- Actual phenotypes vs Estimated Breeding value (gEBV)



Use Case – Improving Beef Quality

Genomic Prediction results – Shear Force

- GBLUP and Bayes C-pi
- Manhattan plot with Allele Substitution Effects

Use Case – Success

Outcome of the study

- Identified markers associated with beef quality
 - SAPS3: modulates protein phosphatase catalytic subunits
 - *CAPN1*: modulates proteolysis of cytoskeletal remodeling and signal transduction
 - *CHI3L2*: involved in cartilage biogenesis
 - CA10: catalyzes reversible hydration of carbon dioxide
 - GPHN: involved in membrane protein-cytoskeleton interactions

Additional Information

Genomic Prediction eBook

Golden Helix at PAG 2018 – San Diego!

- Grand Exhibit Hall
- Come see demos and ask us questions!

SVS package upgrade!

 NGS-based CNV calling for large sample size & association tests

SVS End of Year Pricing Bundles

- SVS Single User License \$2,995
- SVS/VarSeq Bundle \$7,995
- SVS Imputation Module (2 User License) \$7,995

Questions or more info:

- Email info@goldenhelix.com
- Request an evaluation of the software at <u>www.goldenhelix.com</u>
- Check out our abstract competition!

