

Identifying genetic variants associated with rare Mendelian diseases: case studies

Jingga Inlora
Stanford University
Genetics Department (Snyder lab)
inloraj@stanford.edu
5-3-2017

Outline

- Case #1: Isolated congenital anosmia (ICA) and CNGA2 mutation
- Case #2: APTX mutation and hereditary oculomotor apraxia
- Case #3: DAVID Syndrome in patient with novel NFKB2 mutation

Isolated Congenital Anosmia (ICA)

- Rare condition where patients have no recollection of ever being able to smell (OMIM 107200)
 - no additional symptoms or other underlying diseasecausing condition
- Smell Identification Test:
 - University of Pennsylvania Smell Identification Test (UPSIT)
 - Scale of 1 to 24
 - 1-9: anosmic;
 - 9-13: severe microsmia
 - 13-17: mild microsmic
 - 19-24 normosmia state

http://www.scielo.br/img/revistas/bjorl/v76n6/en_a04fig01.jpg

Iranian descent, consanguineous

Family ID	II-4	II-5	II-7	II-9	II-10	III-1	III-3	III-7	III-8	III-9	III-10	IV-1
Age	53Y	60Y	63Y	51Y	52Y	35Y	41Y	34Y	32Y	28Y	22Y	16Y
Sex	F	М	М	М	F	М	F	F	М	М	М	М
Smell test score	Normal	Normal	Normal	0/24	Normal	Normal	Normal	Normal	0/24	7/24	0/24	0/24
Disease status	Normal	Normal	Normal	ICA	Normal	Normal	Normal	Normal	ICA	ICA	ICA	ICA

Exome sequencing analysis

- KAPA library prep kit; IDT exome probes
- Roche Sequencing Solutions (Bina Technologies version 2.7.9)
 whole-exome analysis workflow
- Homozygous variants, allele freq < 0.01
- GoldenHelix Varseq (v1.1)

Individual ID	11-4	II-5	II - 9	II-10	III-1	III-3	III-8	III-9	III-10	IV-1
Total	114,760	108,192	113,826	112,106	108,115	111,921	112,019	113,508	111,772	112,236
Variations	20)52	345	5.5		940	25	257	===	,==
Shared		2	*		88	3,042	•		-	ē:
variants										
Homozygote	16 (Ho	mozygote	in affected	d members	, but eithe	r heterozyg	ote or hom	ozygote for	reference	allele in
variants		controls)								
1KG MAF <						1				
0.01										
EXaC MAF <		1								
0.01										
dbSNP 144		1								
MAF < 0.01										
NHLBI MAF <		1								
0.01										
Exonic	1									
Variants										
Candidate		chrX:150,911,102; CNGA2.aAug10:c.577C>T; p.Arg193*								

Sanger sequencing

The conservation scale:

- e An exposed residue according to the neural-network algorithm.
- b A buried residue according to the neural-network algorithm.
- f A predicted functional residue (highly conserved and exposed).
- s A predicted structural residue (highly conserved and buried).

Summary

- Identified stop-gain variant within exon 6 of *CNGA2* gene.
- The variant segregates with the disease; all five affected individuals are hemizygous for this variant
 - Unaffected individuals are either heterozygous or homozygous for reference allele
- Previously reported variants associated with ICA includes CNGA2 c.634C>T(p.R212*) (Karstensen et al. 2015) and TENM1 c.4829C>T(p.P1610L) (Alkelai et al. 2016)
- Alpha subunit of CNG channel is critical for olfactory sensory neurons to generate odor-induced action potential
- Cnga2 knockout mice are congenitally anosmic and have severely impaired olfactory function

Case#2: Ataxia-oculomotor apraxia

- Hereditary ataxia: a group of disorders characterized by motor discoordination such as poor balance, abnormal eye and hand movements and dysarthria
 - > 30 autosomal dominant forms and > 60 forms that are autosomal recessive or X-linked
- Overlapping presentations and there is a high degree of genetic heterogeneity
- Difficult to devise an efficient strategy for targeted molecular testing in many cases
- WES wad adopted to pursue a molecular genetic diagnosis

Iranian descent, consanguineous
Red label = affected; * = samples that are exome sequenced

Disease status and clinical descriptions

Family member	IV-1	IV-2	IV-3	IV-4	V-1	V-2	V-3	V-4	V-5	V-6	V-7	V-8
Age	64	55	41	41	40	35	33	30	27	24	7	5
Sex	male	female	male	female	male	male	male	female	female	female	male	male
Disease status	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	affected	affected	affected	affected	Healthy	Affected
Clinical manifestation	Normal	Normal	Normal	Normal	Normal	Normal	Progressive ataxia, weak deep tendon reflex (DTR), lack of DTR in left side of the body, dysarthria, hand athetosis and gaze palsy	Progressive ataxia, weak deep tendon reflex (DTR), lack of DTR in left side of the body, dysarthria, hand athetosis and gaze palsy	Progressive ataxia, weak deep tendon reflex (DTR), lack of DTR in left side of the body, dysarthria, hand athetosis and gaze palsy	Progressive ataxia, weak deep tendon reflex (DTR), lack of DTR in left side of the body, dysarthria, hand athetosis and gaze palsy	Normal	Progressive ataxia, weak deep tendon reflex (DTR), lack of DTR in left side of the body, dysarthria, hand athetosis and gaze palsy

Exome sequencing analysis

- KAPA library prep kit, IDT exome probes
- Sentieon whole-exome analysis workflow (Version 201611.01)
- Homozygous variants, allele freq < 0.01
- GoldenHelix Varseq (v1.1)

Family member	IV-1	IV-2	IV-3	IV-4	V-1	V-3	V-4	V-5	V-6	V-7	V-8
Total variants	246619	258704	237096	246080	245318	276779	238190	264546	267455	258174	230905
Shared variants						87882					•
GQ >20 and DP >10						56092					
Effect (loss-of-function						34675					
or missense)											
Homozygote variants	26 (Homozygote in affected members, but either heterozygote or homozygote for reference allele in controls)										
1KG MAF < 0.01	1										
EXaC MAF < 0.01		1									
dbSNP 144 MAF <	1										
0.01											
NHLBI MAF < 0.01	1										
Exonic Variants	1										
Candidate	chr9:32984702; APTX; NM_001195248.1:c.739T>A;NP_001182177.1:p.Lys247Ter										

Sanger sequencing

∥ G	" G	II A	# A	Ā	Ä	Ğ	 G 110
			V	<u>/</u>	5	Λ	
		- 1					1

IV-4

Sample	Affected	Genotype
IV-1	No	T/A
IV-2	No	T/A
IV-3	No	T/A
IV-4	No	T/A
V-1	No	A/A
V-3	Yes	T/T
V-4	Yes	T/T
V-5	Yes	T/T
V-6	Yes	T/T
V-7	No	T/A
V-8	Yes	T/T

Summary

- We identified a novel homozygous stop-gain mutation (c.739T>A; p.274Lys>Ter) in the APTX gene, leading to a diagnosis of ataxia with oculomotor apraxia type 1 (AOA1)
- The variant segregates with the disease; all five affected individuals are homozygous recessive for this variant
- Numerous pathogenic variants of APTX have been identified
- APTX is a ubiquitous nuclear protein that is involved in single-stranded DNA break repair pathway
 - Fibroblasts from patients with AOA1 are hypersensitive to oxidative damage
 - Increased oxidative DNA damage was found in the cerebellum of AOA1 patient (Harris et al., 2009)
- Our study expands the spectrum of pathogenic APTX mutations associated with AOA1

DAVID Syndrome and NFKB2 gene

- Proband: 14 y.o. Causasian diagnosed with ACTH (adenocorticotropic hormone deficiency) and has consistently low immunoglobulins
 - Neither parents nor proband's sister is affected
 - No consanguinity

- DAVID syndrome: Deficient Anterior pituitary with Variable Immune Deficiency (Quentin et al. JCEM 2011)
 - symptomatic hypoglycemia
 - combined variable immunodeficiency (CVID)
 - negative pituitary autoantibodies

NFKB2 gene

- Mutations in NFKB2 gene are known to cause common variable immunodeficiency (CVID) is a heterogeneous disorder characterized by antibody deficiency, poor humoral response to antigens, and recurrent infections
- Known to affect 1:10,000-1:15,000 people

http://www.sciencedirect.com/science/article/pii/S0002929713004229; Brue et al. BMC Med Genet 2014

Exome sequencing analysis

- WES Sequencing and analysis were performed by Personalis Inc.
- De novo variants

Summary

- We identified a novel de novo mutation in the NKFB2 gene (c.2596A>C; p.S866R)
- Testing at Cincinnati Children's Hospital confirmed the presence of the mutation
- NFKB2 encodes p100 protein that is processed to produce the active p52 NF-kappa-B subunit in the non-canonical NFKB pathway
 - Process involves Ser866 and Ser870 phosphorylation by IKK1 (inhibitor of nuclear factor kappa-B kinase subunit alpha) to trigger processing of p100 to p52
- The variant likely prevents phosphorylation and inhibit p52 production

Conclusion

- NGS (WES) will enable us to identify all variants in the human genome, especially the clinically relevant alleles
- These efforts will facilitate precision medicine by tailoring diagnosis and disease treatments based on one's genome
- Literature search, communications with genetic counselors, doctors help tremendously in diagnosis

Acknowledgments

- Snyder lab
 - Reza Sailani
 - Shannon Rego
 - Orit Dagen-Rosenfeld
 - Mike Snyder
- Jon Bernstein
- Collaborators for providing the DNA samples
- Stanford Center for Genomics and Personalized Medicine
- NIH