

CNV Annotations: a crucial step in your variant analysis

Darby Kammeraad Field Application Scientist Manager

20 Most Promising Biotech Technology Providers

Hype Cycle for Life sciences

Top 10 Analytics Solution Providers

NIH Grant Funding Acknowledgments

- Research reported in this publication was supported by the National Institute Of General Medical Sciences of the National Institutes of Health under:
 - Award Number R43GM128485-01
 - Award Number R43GM128485-02
 - Award Number 2R44 GM125432-01
 - Award Number 2R44 GM125432-02
 - Montana SMIR/STTR Matching Funds Program Grant Agreement Number 19-51-RCSBIR-005
- PI is Dr. Andreas Scherer, CEO Golden Helix.
- The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Who Are We?

Golden Helix is a global bioinformatics company founded in 1998

Filtering and Annotation

ACMG Guidelines

Clinical Reports

CNV Analysis

Pipeline: Run Workflows

Variant Warehouse

Centralized Annotations

Hosted Reports

Sharing and Integration

CNV Analysis

GWAS | Genomic Prediction

Large-N Population Studies

RNA-Seq

Large-N CNV-Analysis

Cited in 1,000s of Peer-Reviewed Publications

Over 400 Customers Globally

When you choose Golden Helix, you receive more than just the software

SOFTWARE IS VETTED

- o 20,000+ users at 400+ organizations
- o Quality & feedback

DEEPLY ENGRAINED IN SCIENTIFIC COMMUNITY

- o Give back to the community
- o Contribute content and support

SIMPLE, SUBSCRIPTION-BASED BUSINESS MODEL

- o Yearly fee
- o Unlimited training & support

INNOVATIVE SOFTWARE SOLUTIONS

o Cited in 1,000s of publications

	GENE PANEL E	XOME GENOME		Gol
	SEQ	UENCER		
PRODUCTS	BIOINFORM	ATICS PIPELINE	FUNCTION	
 DNASEQ (Sentieon) TNSEQ (Sentieon) VS-CNV 	F	ASTQ BAM VCF	 Single nucleotide variation Copy number variation & loss of hetero Chromosomal aberration 	zygosity
Annotations	Anno	tated VCF	Public & commercial annotations to enr genomic data sets	ich
VarSeqVSReportsVSPipeline	Clinic	al Report	 Annotate & filter Visually inspect alignments Variant prioritization Clinical assessment 	
VSClinical	Automated /	ACMG Guidelines	Clinical variant interpretation in coordir with ACMG Guidelines & AMP Guidelin	ation es
VSWarehouse	Data W Web-Ena + Powerful A TSV, CS	/arehousing bled Interface APQ: JSON, XML, V, SQL, FHIR	 Clinical assessment catalog Advanced data querying Versioning Interoperability Compliance with HIPPA, CLIA & CAP data discovery 	

CNVs in Clinical Testing

- Critical evidence needed for many genetic tests
- Common driver specific cancers, causal hereditary variation
 - EGFR Exon 19 deletion common in lung cancer
 - PIK3CA Amplification in breast cancer
- Large events used heavily in diagnostics
 - Chromosome 13 deletion common in melanoma
 - Autism Spectrum Disorder (ASD)
 - Developmental Delay (DD)
 - Intellectual Delay (ID)

Power of NGS CNV Detection

	Detectable events			Supported Data types			
	Small: 150b+	Medium: 1–10Kb	Large: 10Kb+	Gene panel	Whole exome	Whole genome	
MLPA	\checkmark			\checkmark			
CMA			\checkmark			\checkmark	
VS-CNV	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	

- ✓ One single testing paradigm
- True simplification of clinical workflow
- ✓ Saves time and money all on site

Addressing Issues - CNV Detection via NGS

- CNVs detected from coverage data in BAM
- Challenges
 - Coverage varies between samples
 - Coverage fluctuates between targets
 - *Systematic biases impact coverage
- Solutions
 - Data Normalization
 - Reference Sample Comparison
 - Algorithm works without case/control data
- Requirements
 - ≥ 30 ref samples
 - From same library prep method
 - Ideally ≥100X coverage

Principle Approach to CNV Calling

CNV Detection: Ratio, Z-score, and VAF

Metrics

- Ratio: sample coverage divided by reference sample mean
- Z-score: standard deviations from reference sample mean
- VAF: Variant Allele Frequency
- For Gene Panels and Exomes
 - Probabilistic model used to call CNVs
 - Segmentation identifies large cytogenetic events
- For Whole Genome Data
 - Targets segmented using Z-scores
 - Events called based on Z-score and Ratio thresholds

Optimizing CNV Detection - Segmentation

- Metrics are noisy over large regions
- Outliers cause large events to be called as many small events
- Solved using segmentation:
 - Regions containing many events are segmented
 - Small events sharing a segmented region are merged

VAF Provides Supporting Evidence

- Values other than 0 or 1 are evidence against het deletions
- Values of 2/3 and 1/3 are evidence for duplications

Advanced Optimization for CNV Detection - LOH

- Issue Large chromosomal deletions and duplications can skew the mean coverage of a sample
 - The previous approaches don't account for this
- Solution Detection of LOH areas to optimize definition of normal regions
 - Prior to running CNV caller
 - Probabilistic model based on VAF (Whole Exome/Genome)
 - Identifies and excludes non-diploid regions from normalization
 - Quality control step to improve CNV caller

CNV Confidence: P-Values

P-Values

- Introspective ability to define confidence in the CNV event
- Confidence threshold definable in your workflow/protocol
- You can modify the threshold at any point

 \checkmark

• Lower the p-value/probability the higher the confidence the event is real

Typical p-values

- <0.05*
- <0.01**
- <0.001***

				CNV Info				
		Region	Туре	# Targets	# Samples	Span	CNV State	^ p-value
		11:108160310	Loss	21	1	39676	Het Deletion	4.68818626586653e-07
		11:108128189	Gain	9	1	22167	Duplicate	8.93228134373203e-05
✓ p-value (Current) < 0.01	ų –	17:29683459	Gain	6	1	4283	Duplicate	0.00131093873642385
	- kdu	8:90965453-9	Gain	5	1	17353	Duplicate	0.0050437287427485
0.01	+	3:37053483-3	Gain	5	1	14036	Duplicate	0.00561221409589052
	-	17:56769986	Gain	4	1	10725	Duplicate	0.00574351288378239
Less than 0.01	2	11:64573088	Gain	4	1	1624	Duplicate	0.0100980764254928
Equal to 0.01	0	17:41219606	Gain	4	1	9046	Duplicate	0.0126859014853835
Greater than 0.01	0	17:41201106	Gain	4	1	14305	Duplicate	0.0156013108789921
Missing	0	11:108151711	Loss	4	1	6752	Het Deletion	0.0184763930737972
linooning	Ŭ	11:108121409	Gain	3	1	2251	Duplicate	0.0187129583209753
	2	3:37045873-3	Loss	4	1	7501	Het Deletion	0.0200324188917875

CNV Workflow and Annotations

- Workflow Issue: How to screen through many CNV events?
 - Especially relevant with WES
 - What steps are necessary to find events relevant to the patient?
- First step
 - Prioritize CNVs specific to sample
 - High quality
 - High confidence
- Second step
 - DGV CNVs Exclude CNVs in known healthy individuals
 - Genomic Sup Dups Exclude CNVs in known duplication regions
 - ExAC + 1kG Phase3 Eliminate common CNVs
 - ClinGen + ClinVar Eliminate known benign CNVs
- Third step
 - Prioritize individual sample phenotype + gene list

Project Demonstration

NIH Grant Funding Acknowledgments

- Research reported in this publication was supported by the National Institute Of General Medical Sciences of the National Institutes of Health under:
 - Award Number R43GM128485-01
 - Award Number R43GM128485-02
 - Award Number 2R44 GM125432-01
 - Award Number 2R44 GM125432-02
 - Montana SMIR/STTR Matching Funds Program Grant Agreement Number 19-51-RCSBIR-005
- PI is Dr. Andreas Scherer, CEO Golden Helix.
- The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

We're headed to ESHG 2019 in June!