

Processing Hereditary Cancer Panels in VarSeq

Darby Kammeraad

FAS Manager

Kammeraad@goldenhelix.com

otech Technolog Providers

Top 10 Analytics Solution Providers

Hype Cycle for Life sciences

Please enter your questions into your GoToWebinar Panel

Golden Helix – Who We Are

F

Golden Helix is a global bioinformatics company founded in 1998.

Variant Calling Filtering and Annotation Clinical Reports VSClinical CNV Analysis Pipeline: Run Workflows

Variant Warehouse Centralized Annotations Hosted Reports Sharing and Integration

SNP &

GWAS Genomic Prediction Large-N-Population Studies RNA-Seq Large-N CNV-Analysis

Cited in over 1200 peer-reviewed publications

Over 350 customers globally

When you choose a Golden Helix solution, you get more than just software

- REPUTATION
- TRUST
- EXPERIENCE

- INDUSTRY FOCUS
- THOUGHT LEADERSHIP
- COMMUNITY

- TRAININGSUPPORT
- RESPONSIVENESS

 INNOVATION and SPEED

WWW.GOLDENHELIX.COM

INFO@GOLDENHELIX.COM

- Variant annotation, filtering, and interpretation
- Powerful GUI with rich visualizations
- Repeatable workflows + pipeline

Goals for the Webcast

Building a project template

- Focus on cancer panel
- Target specific phenotypes/genes
- Useful annotations
- Investigate interesting Variants
 - VSClinical/ACMG Guidelines variant deep dive
 - Include variant in clinical report
- Save project as template
 - Demonstrate speed/efficiency of using template
 - Discuss other options for workflow efficiency

Example Trio Project

- Background Public Data
 - Yoruban Trio
 - Mother NA12938
 - Father 39
 - Proband (female) 40

- Trio Analysis including
 - De Novo Candidate
 - Dominant Heterozygous
 - Compound Heterozygous
 - Recessive Homozygous
 - X-Linked
 - Known Rare Pathogenic

🝸 Trio Workflow 🗙 🙆 Golden Helix Var	Seq 2.0.1 🗙	🔇 🔇 VarSeq Example: Exom 🗙 🕂				
Variants 🔻						
🗹 🖬 Trio Workflow						
🗹 de Novo Candidate	ъ I	🗹 Compound Heterozygous 🔧 I	🖸 Dominant Heterozygous 🔦 I	Recessive Homozygous 🔌 I		🖂 Known Rare Pathogenic 🔦 ㅣ
Read Depths (DP) (Current) > 10	* 🗆	Read Depths (DP) (Current) > 10 🔹 🗖	Read Depths (DP) (Current) > 10 🔹 🗖	🗹 Read Depths (DP) (Curreni 🔧 🛛	× ked	🗹 All MAF < 0.01 OR mi 🔦 🛛 🛛
	712	712	712	712	K-Lin	205
Genotype Qualities (GQ) (Current) >	* □	🖂 Genotype Qualities (GQ) (Current) 🔧 🗖	Genotype Qualities (GQ) (Current) > 🔦 🗖	🖂 Genotype Qualities (GQ) (C 🔧 🗖	î	🗹 Zygosity (Current) is 🔹 🗖
	709	709	709	709		144
All MAF < 0.01 OR missing	* □	All MAF < 0.01 OR missing	All MAF < 0.01 OR missing	🖂 All MAF < 0.01 OR missing 🔦 🗖		🗹 Clinical Significance 🔌 🛛
	196	196	196	196		
Effect (Combined) is (LoF, Missense	• •	Effect (Combined) is (LoF, Missen: 🔦 🛛	🗹 Effect (Combined) is (LoF, Missense 🔦 🗖	🗹 Effect (Combined) is (LoF, I 🔦 🛛		
0	80	0 80	0 80	0 80		
Mendel Error (Current) is de Novo Al	↓ □	🗹 Compound Het? (Current) is true 🔌 🗖	🗹 Zygosity (Current) is Heterozygous 🔌 🗖	🖂 Recessive Inheritance Mod 🔦 🗖		
	3	2	40	1		
0	3	2	0 40		734	

VarSeq Overview

F

- Included Default Workflows
 - Trio Analysis including
 - De Novo Candidate
 - Dominant Heterozygous
 - Compound Heterozygous
 - Recessive Homozygous
 - X-Linked
 - Known Rare Pathogenic
 - Example Projects
 - Example TruSight Cardio Gene Panel
 - Example YRI Exome Trio Analysis
 - Example Tumor-Normal Pair Analysis

- Hereditary Gene Panel
- Somatic Mutation Workflows
 - Cancer Gene Panels
 - Tumor/Normal Pair Analysis

Data Curation of Annotation Sources

VarSeq is backed by an extensive list of curated public data sources

- 1kG Phase3 Variant - dbSNP Frequencies
 - FxAC

- ClinVar, NCBI

- COSMIC

- RefSeq Genes, NCBI
- dbNSFP Functional Predictions
- ClinGen Dosage Sensitivity Mapping
- Your workflows lock down specific versions
- **Cloud Annotations:**
 - **OMIM** Genes, Phenotypes and Variants
 - CADD, tool for scoring deleteriousness of SNVs and Indels in the human genome.

VS Clinical - Variant Interpretation

Evaluation of Evidence:

- Clinical presentation
- Gene function
- Bioinformatic evidence
- Population frequencies

ACMG Guidelines:

Golden Helix

- 33 criteria for evaluating evidence
- 5 classifications from the scored criteria
- Caveats and discussion about how to evaluate criteria in different context

VSClinical

- High level
- Consistent results
 - Time irrelevant
 - No fatigue impact
- Up to speed quickly
- Ramping up workforce
- We working on developments and you benefit

Scored Criteria by Strength: Very Strong ×O Strong ×0 Pathogenic Moderate ×0 ×0 BP4, BP5 x2 Supporting Benign Strong BS1 ×1 Stand Alone ×0

ACMG Classification:

Likely Benign

ACMG Classification

The classification of Likely Benign applies with scored critera of 1 very strong pathogenic along with 2 or more moderate pathogenic and no benign.

Recommended Criteria:

- Perform functional assay to determine the effect of the variant in the gene.
- Establish the precense of the variant in the parents

Analysis Workflow with VSClinical

- 1. Follow your existing VarSeq annotation and filtering workflow
- 2. Add new ACMG Auto Classifier algorithm:
 - Looks up if variant annotated in previous sample
 - Scores 18 criteria based on available evidence from 7 sources
- 3. Select variants to evaluate using the ACMG Guidelines
- 4. Score and Finalize each variant, selecting which to report

GOLDEN HELIX

5. Finalize the sample, review and report

VSReports

Prepared "Templates"

- ACMG Standard Germline Report
- Configurable Global Settings
 - Logo
 - Lab Information
 - Test Description / Disclaimers

Customizable Sample Inputs

- Patient Information
- Test Results

Selected Variants Added

- Per-variant information

Customizable

- Default values are scriptable
- Rendering is entirely programmatic

Golden Labs | 203 Enterprise Blvd Bozeman, Montana 59718 | Phone: (406)-587-8137 | Fax: (406)-555-5555

Patient Informatio	n						
Name NA19240			Gender Date of Male July 1	FBirth	8	ld 1234	
Mother Informatio	n						
Name NA19238		Date of Birth July 10, 2018			ld 1235		
Father Information	n						
Name NA19239		Date of Birth July 10, 2018			ld 1236		
Reference Informa	ation						
Physician Case Id		Identification Number			Institution	 	
Sample Informatio	n						
Sample Site	Sample Type	Collection Method	Collection Date July 10, 2018		Receipt Date July 10, 2018	Report Date July 10, 2018	

Results - Positive

Mutations with an established link detected.

Primary Findings

Gene	Exon	Variant	Zygosity	Pathogenicity
SMAD4	12	NM_005359.5:c.1498A>G (NP_005350.1:p.lle500Val)	Heterozygous	Pathogenic

Affected Genes

Interpretation Summary

VSPipeline - High throughput

- Command-line interface that automates pipelines and workflows
- Build template in VarSeq then automate with VSpipeline

Please enter your questions into your GoToWebinar Panel

20-month license for the price of a 12-month license

- (2 <u>1 left</u>) SVS License 1 user \$2,995
- (3 <u>1 left</u>) VarSeq License 1 user \$4,795
- (<u>1</u>) VarSeq License (w/ VSReports & VS-CNV) 1 user \$12K
- (3 <u>1 left</u>) VSClinical License (w/ VarSeq, VSReports, CADD & OMIM) 1 user \$12K
- (2) VSClinical & VS-CNV License (Small Lab Starter) 2 user \$24K
- (2) VarSeq, VS-Reports, VS-CNV, Tier 1 Sentieon (1 users) \$17.5K
- (3 2 left) Sentieon Tier 2 License \$10K
- (2) Small Warehouse License (VS-CNV, VSClinical, Sentieon Tier 1, VSReports, VSPipeline) 2 user - \$48K
- (1) Warehouse License (VS-CNV, VSClinical, Sentieon Tier 1, VSReports, VSPipeline) Up to 10 users - \$120K
- (1) SVS Server License with Imputation 2 user \$7,995

These offers will expire on September 15, 2018

Please enter your questions into your GoToWebinar Panel

