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Previous Webinar

 Extremely popular

 Available to view at www.goldenhelix.com

 Feedback inspired today’s presentation about downstream analysis



Today’s Presentation

 What I Assume About You
- Some experience with NGS technology and 

downstream analysis of genomic data
- Not intimidated by the figure at the right→
- Curious to learn more about the process and 

practice of predicting functional 
consequences of genetic variants

 What You Will Learn
- The informatics processes that underlie 

functional predictions
- How to apply functional predictions in your 

own research

 What You Won’t Learn
- One true way to make functional predictions

www.genome.gov



NGS Analysis

Primary
Analysis

Secondary 
Analysis

Tertiary
Analysis

“Sense Making”

 Analysis of hardware generated data, on-machine real-time stats.
 Production of sequence reads and quality scores

 QA and clipping/filtering reads
 Alignment/Assembly of reads
 Recalibrating, de-duplication, variant calling on aligned reads

 QA and filtering of variant calls
 Annotation and filtering of variants
 Multi-sample integration
 Visualization of variants in genomic context
 Experiment-specific inheritance/population analysis



Sample Variant Analysis Workflow

Filter out common and 
low-quality variants

Filter by inheritance 
or zygosity state

Reduce to non-
synonymous

Prioritize 
Remaining 

Variants

VCF file goes in

 Many NGS tertiary analysis 
workflows follow a system of 
annotation-based filtering

 Common to have a long list of 
candidate variants 

 Variants need to be prioritized 
for validation experiments

 Prioritizing those candidates 
is extrememly important, but can 
be a very difficult process



Functional Prediction Algorithms

 SIFT

 PolyPhen

 PolyPhen-2

 MutationTaster

 MutationAssessor

 FATHMM

 PANTHER PSEC

 SNPs&GO

 MutPred

 SNAP

 PMut

 TopoSNP

 SNPs3D

 VEST

 PhD-SNP

 X-Var

 Align-GVGD

 PROVEAN

 nsSNPAnalyzer

 LRT



Motivation

 Published comparisons indicate that most prediction algorithms are similar in 
their ability to detect true functional variants

 But in practice, they rarely agree about much of anything
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The Central Dogma of Molecular Biology

“The central dogma of molecular biology deals with 
the detailed residue-by-residue transfer of 
sequential information. It states that such 

information cannot be transferred back from protein 
to either protein or nucleic acid.”

-- Francis Crick, 1958

 In other words:
- DNA is transcribed to RNA 
- RNA is translated to create proteins 
- Unidirectional process

 Protein is where damaging effects of a DNA 
mutation will be observed

 Functional prediction algorithms are based 
almost entirely on protein sequences

Image from Wikimedia Commons, Dhorspool



Transcription

 Transcription is the process by which an RNA transcript is created from DNA 
within the cell nucleus before moving to the cytoplasm

 Includes splicing exons
together to create 
meaningful 
transcripts

 The complete collection 
of mRNA transcripts in 
a given cell or tissue is 
often called the 
“transcriptome”

Image from genome.gov



Translation

 mRNA transcripts are converted to 
amino acid sequences via the 
translation process

 Think of it as a different language; 
nucleic acids versus amino acids

Images from genome.gov and WikiMedia Commons, by ladyofhats



Amino Acid Properties

 Amino Acids are distinguished by their 
respective residues (aka side-chains 
or R-groups)

 Residues are classified by polarity, 
volume, hydrophobic and other 
physicochemical properties

Images from WikiMedia Commons, 
by YassineMrabet and DanCojocari



Levels of Protein Structure

 Primary Structure
- Linear sequence of amino acids

 Secondary Structure
- Interaction between amino acids via hydrogen 

bonding results in regular substructures called 
alpha helices and beta sheets

 Tertiary Structure 
- The final three-dimensional form of an amino 

acid chain
- Is influenced by attractions between 

secondary structures

 Quaternary Structure
- Several tertiary structures may interact to 

form quaternary structures

Image from WikiMedia Commons, ladyofhats



From Structure to Function

 Proteins include various types of functional domains, binding sites and other 
surface features
- This determines how the protein interacts with other molecules

 Replacing certain amino acids may have drastic effects on the protein structure
- Thereby affecting the protein function

http://www.vanderbilt.edu/vicb/DiscoveriesArchives/g_protein_receptor.html

 If we know how the protein 
structure is affected by an 
amino acid substitution, we 
can make a good guess 
about functional 
consequences.

 The problem is that we 
don’t know the wild-type 
3D strucuture of most 
proteins.



Using Primary Structure as Proxy for Tertiary

 83% of disease-causing mutations affect 
stability of proteins (Wang and Moult, 2001)

 90% of disease-causing mutations can be 
detected using structure and stability

 Many human proteins have numerous 
homologs:
- Paralogs: Separated by a gene duplication 

event
- Orthologs: Separated by speciation

 Don’t know the exact structure of most 
proteins, but we can compare amino acid 
sequences to identify domains and motifs 
conserved by evolution

 Disease causing mutations are 
overrepresented at conserved sites in the 
primary structure (Miller and Kumar, 2001) 



Multiple Sequence Alignment

 A multiple sequence alignment (MSA) comparing the amino acid (AA) 
sequence of protein homologs can be generated by BLAST or similar algorithms

 Almost all contemporary functional prediction algorithms incorporate MSAs in 
some manner

Joerger A C et al. PNAS 2009;106:17705-17710



More on Multiple Sequence Alignments (MSAs)

 MSAs may include 700 or more homologous sequences in some methods

 Prediction algorithms may incorporate orthologs and/or paralogs in the MSA

 Distantly related orthologs are frequently cited (especially SIFT authors) as 
giving optimum prediction performance
- Be cautious—phylogenetic relationship doesn’t always mean that the protein has the 

same function or is similarly important in both species
- Some authors (especially PolyPhen2) argue that a combination of paralogs and 

orthologs is best

 While most functional prediction algorithms incorporate MSAs, they differ in 
how the MSA is interpreted and how AA substitutions are scored



Trained and Untrained Algorithms

Trained/Weighted Algorithms

 Machine learning methods 

 Classify the functional consequence of 
a given mutation based on 
characteristics observed in a selected 
set of mutations known to be either 
damaging or benign

 May include known disease 
sequences in the MSA

 Selection of training data is important 
factor in algorithm performance and 
appropriateness for any given analysis 
project

 Examples: PolyPhen-2, MutationTaster

Untrained Algorithms

 Do not incorporate machine 
learning techniques.

 A given mutation is classified based 
on a theoretical model 
incorporating important prior 
knowledge about the types of 
mutations that are expected to 
cause disease

 May not carry some of the biases
present in a trained algorithm and 
may have more general applicability 
for various analysis projects

 Examples: SIFT, MutationAssessor, 
FATHMM-unweighted
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Five Algorithms to Review

Algorithm
Pub
Year

Citations 
(G.Schol.)

Host
Inst. Category Distinguishing Characteristic

SIFT 2003 >1200 JCVI  
(UW)

Untrained Popular, broadly applicable and intuitive 
method to identify functional mutations.

PolyPhen2 2010 >1000 Harvard/ 
BWH

Trained Provides 2 scores (HumDiv and HumVar) for
applications to complex and Mendelian
disease, respectively.

Mutation
Assessor

2011 57 MSKCC Untrained Considers AA conservation in protein 
subfamilies to refine important functional 
regions. Interactive user interface.

Mutation 
Taster

2010 199 Charité -
Berlin

Trained Native support for DNA (rather than AA) 
variant analysis. Allows online submission of 
VCF files.

FATHMM 2013 NA U Bristol Trained 
(weighted)

Uses HMM method (rather than BLAST) to 
create MSA. Weighted extensions for human 
disease and cancer analysis.

These five methods were selected due their inclusion in the Database for NonSynonynous 
Functional Predictions (dbNSFP: Liu et al., 2011) which can be accessed within Golden Helix 
SNP & Variation Suite (SVS)



dbNSFP

 The Database for NonSynonymous Functional Predictions (dbNSFP) is a 
free tool developed by Dr. Xiaoming Liu. [Hum Mutat 32(8):894, 2011]

 Catalogs several pre-computed conservation and functional prediction scores 
for all possible nsSNPs in the human genome

 Downloadable database and Java program for annotating variants in VCF
- 75 variables returned for each queried variant

 Conservation scores:
- PhyloP, GERP++, SiPhy

 Functional Predictions:
- SIFT, PolyPhen-2, LRT, MutationAssessor, 

MutationTaster, FATHMM

 Other Annotations:
- Variant frequencies, disease associations, transcript data, haploinsufficiency

 Available at (https://sites.google.com/site/jpopgen/dbNSFP)



SIFT

 “Sorting Intolerant From Tolerant” (sift.jcvi.org)

 “SIFT predicts whether an amino acid substitution affects protein function. SIFT 
prediction is based on the degree of conservation of amino acid residues in 
sequence alignments derived from closely related sequences, collected through 
PSI-BLAST.”

 Publications:
- Predicting Deleterious Amino Acid Substitutions. Genome Res. 2001 May;11(5):863-74.

- Cited by 844 (per Google Scholar)
- SIFT: predicting amino acid changes that affect protein function. Nucl. Acids Res. (2003) 

31 (13): 3812-3814
- Cited by 1,248

- Predicting the effects of coding non-synonymous variants on protein function using the 
SIFT algorithm. Nat Protoc. 2009;4(7):1073-81
- Cited by 564



SIFT: How It Works

 Relies entirely on sequence and 
does not include structural 
features

 Builds an MSA based on PSI-
BLAST and considers several 
features in scoring a variant AA:

- Is the position highly conserved 
for a single amino acid?

- Is the position highly conserved 
for amino acids with a particular 
polarity, charge, or other chemical 
property?

- How different is the mutant AA 
from the most common AA in the 
MSA?

Nat Protoc. 2009;4(7):1073-81



SIFT Scores and Predictions

Nat Protoc. 2009;4(7):1073-81

AAs in capital 
letters appeared 
at least once in 
the MSA

Scores in black are 
predicted to be 

tolerated



SIFT MSA Diversity vs. Prediction Accuracy

 “Confidence in a substitution predicted to be deleterious depends on the 
diversity of the sequences in the alignment. If the sequences used for 
prediction are closely related, then many positions will [wrongly] appear 
conserved… This leads to a high false positive error...”

Nucl. Acids Res. (2003) 31 (13): 3812-3814

 SIFT therefore returns 
a conservation score 
to indicate the diversity 
of sequences used in 
the alignment

 Using predictions with 
median conservation 
>3.25 is discouraged



Using SIFT

 Web interface for making queries 
at sift.jcvi.org

 Classify amino acid substitutions, 
SNPs, or indels

 Can run interactively or via 
batch upload (maximum 100k 
variants)

 Requires simple text format for 
describing variants

 Extensive annotations provided 
with output

 Output returned in html or 
downloadable text table



PolyPhen-2

 Polymorphism Phenotyping v2
(genetics.bwh.harvard.edu/pph2)

 “PolyPhen-2 is a tool which predicts possible impact of an amino acid 
substitution on the structure and function of a human protein using 
straightforward physical and comparative considerations.”

 Publication:
- A method and server for predicting damaging missense mutations. Nature Methods 7, 

248 - 249 (2010)
- Cited by 1058 on Google Scholar



PolyPhen-2: How It Works

 PolyPhen-2 is a trained algorithm that uses a naive Bayes classifier to score 
variants based on 11 predictive features.

 The most informative predictive features characterize:

Nature Methods 7, 248 – 249 (2010) [Suppl]

 How likely the two human 
alleles (WT/alt) are to occupy 
the site given the pattern of 
AA replacements in the MSA 
(aka PSIC score [Sunyaev et 
al, 1999])

 How distant the protein 
harboring the first deviation 
from the human wild-type allele 
is from the human protein

 Whether the mutant allele 
originated at a hypermutable
site



Features in the PolyPhen-2 Prediction Model

Eight Sequence Features:
 PSIC score of the wild-type AA
 Difference in PSIC score between wild-

type and alternate AA
 Sequence identity to the closest 

homolog carrying any mutant AA
 Congruency of the mutant allele to the 

multiple alignment
 CpG context of transition mutations
 Alignment depth at mutation site
 Change in amino acid volume
 Whether mutation site is in an annotated 

Pfam domain

Three Structural Features (for 
proteins with known 3D structures):
 Accessible surface area of the wild-type 

residue

 Change in hydrophobic propensity

 Crystallographic β-factor reflecting 
conformational mobility of wild-type residue

“We have found that including both orthologs and paralogs of the analyzed sequence in 
MSA leads to more accurate predictions, perhaps because a majority of disease-
causing replacements affect protein structure, rather than specific aspects of function”



Two PolyPhen-2: Two Prediction Models

HumVar

 Trained on all 13,032 human 
disease-causing mutations from 
UniProt and 8,946 human nsSNPs
without annotated involvement in 
disease

 “Non-damaging” set includes a 
sizable fraction of mildly deleterious 
alleles. HumVar is tuned to detect 
drastic effects and is best used in 
analysis of Mendelian traits

HumDiv

 Trained on all 3,155 damaging alleles 
annotated in UniProt as causing 
human Mendelian diseases and 
affecting protein stability or function, 
together with 6,321 differences 
between human proteins and closely 
related mammalian homologs, 
assumed to be nondamaging and 
close to selective neutrality

 Should be used to evaluate rare 
alleles at loci potentially involved in 
complex disease. HumDiv is likely 
to classify even mildly deleterious 
alleles as damaging

PolyPhen-2 calculates two unique predictions. Both use the same basic 
methods, but the predictions are trained with different training datasets.



Using PolyPhen-2

 Web interface for making queries at 
genetics.bwh.harvard.edu/pph2

 Classify amino acid substitutions or 
SNPs

 Requires simple text format for 
describing variants

 Can run interactively or via batch 
upload

 Standalone software may be 
downloaded and installed locally

 Watch Out: Documentation and user 
guides for both the web app and 
standalone program are incomplete.



MutationAssessor

 MutationAssessor (mutationassessor.org)

 “The server predicts the functional impact of 
amino-acid substitutions in proteins, such as mutations discovered in cancer or 
missense polymorphisms. The functional impact is assessed based on 
evolutionary conservation of the affected amino acid in protein homologs.”

 “We use this rich evolutionary information for the prediction of the functional 
impact of mutations in general and in cancer in particular.”

 Publications:
- Method and server white paper:

- Predicting the functional impact of protein mutations: application to cancer 
genomics. Nucl. Acids Res. 39. (2011)

- 57 citations
- Original method paper:

- Determinants of protein function revealed by combinatorial entropy 
optimization. Genome Biology 8, R232. (2007)
- 62 citations



About MutationAssessor

 Unique in that it was designed with 
special consideration for evaluating 
somatic variants in cancer

 Authors are careful in selection of 
terminology: refer to variants as 
“functional” rather than “damaging” or 
“disease causing”

 MutationAssessor concept is to capture 
variants with various consequences: 
- Loss of function
- gain of function
- drug resistance
- switch-of-function

Nucl. Acids Res. 39 (2011)



MutationAssessor: How It Works

 Uses multiple sequence alignments together with known 3D structures of 
sequence homologs
- 3D structures are annotated in output, but aren’t part of the functional impact score.

 Stands out from other methods in the use of protein subfamilies

Nucl. Acids Res. 39 (2011)

 Calculates two 
scores for each AA 
substitution:

1. Conservation
(across entire 
protein family)

2. Specificity 
(conserved within 
subfamily, but not 
conserved in entire 
family)



MutationAssessor: Schematic

Nucl. Acids Res. 39 (2011)

 Functional Impact Score is the sum of the conservation and specificity scores

 “The specificity residues are predominantly located on protein surfaces in known 
or predicted binding interfaces and often directly linked to protein functional 
interactions.”



MutationAssessor: Validation

Nucl. Acids Res. 39 (2011)



Using MutationAssessor

 Web query interface at 
mutationassessor.org

 Classifies amino acid substitutions 
only
- Also allows submission of variants using DNA 

coordinates and base changes
- Mutations classified as neutral, low, medium, 

or high functionality.

 Best run interactively, has option for batch 
upload via WEBAPI

 Extensive output including domain 
annotations and options to display MSA 
and 3D structure of most similar protein 
with known tertiary structure

 Simple by powerful user interface. Let’s 
take a look at it…



MutationTaster

 MutationTaster (mutationtaster.org)

 “MutationTaster integrates information from different 
biomedical databases and uses established analysis 
tools. Analyses comprise evolutionary conservation, splice-site changes, loss of 
protein features, and changes that might affect the amount of mRNA. Test 
results are then evaluated by a naïve Bayes classifier, which predicts the 
disease potential.”

 Publication:
- MutationTaster evaluates disease-causing potential of sequence alterations. Nature 

Methods 7, 575–576 (2010)
- Cited by 199



About MutationTaster

 Trained classifier
- Trained on over 50,000 disease mutations 

and 520,000 common polymorphisms 
gathered from various sources

 One of the few prediction tools 
with native support for DNA 
alterations rather than AA 
substitutions
- Annotates indels and non-coding regions in 

addition to protein-coding SNPs
- Has option to combine adjacent mutations 

into a complex substitution polymorphism to 
determine the true amino acid change

 Web interface allows for upload 
and annotation of VCF files
- Limited to single-sample VCFs
- Seems very popular. Over 6,200 “very large 

jobs” were in queue on April 29



More about MutationTaster

 Uses three different annotation methods depending on the type of mutation:
- Alterations that don’t affect AA sequence (intronic and intergenic SNVs, indels and 

substitutions.
- Alterations that affect a single AA position (SNVs or substitutions)
- Alterations that affect multiple AA positions (Frameshifts)

 The classifier is trained on a different set of predictors for each type

 Output includes extensive annotations for coding and non-coding regions

- Alterations of Kozak consensus sequence
- Propensity to affect splice sites (based on 3rd party program “NNSplice”)
- dbSNP, 1kG, ClinVar, HGMD annotations
- Various regulatory features; both AA and DNA conservation values

 Caution: Has some quirks. But ease of use and breadth of application for 
DNA are attractive



FATHMM

 Functional Analysis through Hidden Markov Models (fathmm.biocompute.org.uk)

 “A high-throughput web-server capable of predicting the functional, molecular 
and phenotypic consequences of protein missense variants using hidden 
Markov models (HMMs) representing the alignment of homologous sequences 
and conserved protein domains.”

 Publications:
- Predicting the Functional, Molecular and Phenotypic Consequences of Amino Acid 

Substitutions using Hidden Markov Models. Hum. Mutat., 34, 57-65 (2013)
- Predicting the Functional Consequences of Cancer-Associated Amino Acid 

Substitutions. (Submitted)



About FATHMM

 The authors argue that MSAs based on hidden Markov models (HMMs) are 
inherently superior to alignments from BLAST and related methods

 The standard untrained version of FATHMM uses HMM methodology to 
construct the MSA that is used to assess conservation of AA residues

 FATHMM also queries manually curated HMMs representing the alignment of 
conserved protein domain families (SUPERFAMILY and Pfam)

Hum. Mutat. 34, 57-65 (2013)

 A species-specific 
version incorporates 
“pathogenicity weights”

 Derived from the 
relative frequency of 
disease associated 
and functionally 
neutral sequences 
mapping onto 
conserved protein 
domains



Using FATHMM

 Web portal at 
fathmm.biocompute.org.uk

 Submit variants based on AA 
substitution or by rsID. No support 
for other DNA-based formats

 Output returned in html or 
downloadable text table
- Output may include optional annotations 

from Human Phenotype Ontology, Gene 
Ontology, Disease Ontology or other 
sources

 Application can be installed and 
run locally

 Cancer-specific version also 
available, but still unpublished
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What now?

 How do we know if they really work?  What should I use?

 There are several published comparisons based on various standards

 These comparisons serve as a starting point to understand the differences in 
methods

Accuracy and Sensitivity for different types of AA substitutions. (Thusberg et al., Human Mutation, 2010)



Published Comparisons

 Published comparisons have generally similar findings:
- Most algorithms are 65% - 80% accurate when comparing known disease mutations 

to neutral mutations, with reasonable ROC curves

 The problem is that in practice, there are many variants with uncertain 
consequences, and this gray area is where interpretation is especially difficult

 Most algorithms will predict 10%-20% of all nsSNPs to be damaging

Hum. Mutat., 34, 57-65 (2013)



Classifying all nsSNPs in a Sample

 NA12878 – CEU
- 10,366 total nsSNPs
- 3355 (32%) called damaging by at 

least one method
- 23 (0.22%) called damaging by all 5

 HG00733 – PUR
- 9566 total nsSNPs
- 3197 (33%) called damaging by at 

least one method
- 21 (0.22%) called damaging by all 5



Classifying all nsSNPs in 2 more Samples

 NA18526 – CHB
- 10,407 total nsSNPs
- 3437 (33%) called damaging by at 

least one method
- 25 (0.24%) called damaging by all 5

 NA19240 – YRI
- 11,661 total nsSNPs
- 4058 (35%) called damaging by at 

least one method
- 38 (0.33%) called damaging by all 5



How Many Damaging SNVs per Sample?

Number of algorithms calling each SNP 
Damaging/Functional

Sample # nsSNPs 0 1 2 3 4 5

NA12878 (CEU) 10,366 7011 2110 725 375 122 23
HG00733 (PUR) 9566 6369 1957 706 384 129 21
NA18526 (CHB) 10,407 6970 2121 774 400 117 25
NA19240 (YRI) 11,661 7603 2438 893 509 180 38

 Of the 23 SNPs that are universally predicted damaging in NA12878:
- 13 are in 1000 Genomes Project, 11 have allele frequencies ≥1% in Europeans
- 15 are in the NHLBI ESP data, 8 have allele frequencies ≥1% in Europeans

 The YRI sample has 15% more nsSNPs, but 65% more called damaging by 
all 5 methods
- African genomes are very diverse

- Human reference genome is biased toward European alleles, & protein 
sequences used in MSAs for prediction are likely to be similarly biased



Which One Should I Use?

 Common belief is that variants called damaging by multiple algorithms are 
most likely to have true disease causing potential

 Published comparisons aren’t exhaustive, and usually focus on prediction 
performance for detecting a particular category of mutations

 Each prediction tool has its own strengths and weaknesses, and may carry 
certain biases based on the authors’ own research interests

 All of the algorithms generally perform well for distinguishing between known 
damaging variants and known neutral variants

 False positive rate can be high when the methods are applied to a broad 
range of variants of unknown significance.
- Difficult to quantify this
- Numerous (most?) nsSNPs have functional consequences, but may not cause disease



Anecdotal Experience

 Algorithms consider many factors, and it’s difficult to identify an 
obvious reason for most discrepancies.

 I reviewed several variants called damaging by SIFT and PolyPhen2, but 
called neutral by MutationAssessor
- When submitted to the MutationAssessor website, many of these variants had very 

low depth in the MSA (1-7 sequences)
- It seems that MutationAssessor errs toward neutral when there is little data.

 Similarly reviewed several variants called damaging by PolyPhen2 and 
MutationAssessor, but called tolerated by SIFT.
- Sites were generally highly conserved, and SIFT scores trended low (0.08-0.2)
- Reference and alternate AA usually had similar chemical properties.
- SIFT may be more sensitive to chemical similarity than the others.
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dbNSFP SVS Integration

 Golden Helix SNP & 
Variation Suite allows users 
to annotate and filter nsSNPs
based on functional 
predictions from dbNSFP

 Users can filter SNVs based 
on any or all of the 
algorithms described today

 dbNSFP prediction data can 
also be viewed interactively 
in GenomeBrowse



[Using dbNSFP in SVS]



Further Reading

The following papers were very helpful in preparing this presentation:

 “Predicting the Effects of Amino Acid Substitutions on Protein Function” 
by Ng and Henikoff
- Annu. Rev. Genomics Hum. Genet. 2006. 7:61-80

 “Performance of Mutation Pathogenicity Prediction Methods on Missense
Variants,” by Thusberg, Olatubosun, and Vihinen
- Hum. Mut. 2011. 32(4):358-68



What topics 
would you be 
interested to 
learn about 
next? 



Questions?
Use the Questions pane in 
your GoToWebinar window


