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[Poll: What category of species are you studying?]
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A brief background of GWAS

[ Plots from Population + Principal Components (Additive Model) + Multidimensional Outlier Detection - Sheet 1 against EV = 35.9939 [281] (=] @ ]

= First the naive T —
approaches: P ——
Test, Linear/Logistic n

Regression

15.582
=]

= Batch Effects, ]
Population Structure
and sharing of |

assumptions of the | ® v= asgm00’
naive approaches.
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Goal of better GWAS approaches

= Minimize false
positives, obtain @
cleaner results, don't
over correct the data H
to miss out on
Interesting results -
= Handle population, @ H @ -
family-based or mixed
study designs.
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Essential Definitions

= Mixed Linear Model:
-Y =XB +Zu+ € where u~ N(0,64K*), e~N(0,021) and
Cov(u,e) =0
= Fixed Factors:
- Sex, age, known loci

= Random Effects:
- Family or Population Structure, batch effects

= Kinship Matrix:

- Any N x N matrix that describes the pairwise relationships
between N samples

= Null Hypothesis (generally): o5 = 0

GOLDEN HEL:X
Accelerating the Quest for Significance™




Approximate Timeline

GWAS + Correcting
Naive GWAS for Population
Stratification

Mixed Model
Approaches

: Corr/Trend Test . Genomic Control : EMMA (Kang 2008)
| Regression Analysis © Structured Association . BLUP/GBLUP Approaches for
: (STRUCTURE) GWAS (Zhang 2008)

: PCA Correction (Eigenstrat : EMMAX (Kang 2010)

‘' Price 2006) : MLMM (Segura 2012)
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Methods for MLMs in GWAS -

»
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EMMA/EMMAX/MLMM Relationship

EMMA

EMMAX

MLMM
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Methods Overview

Regression with PCA Correction
- Accounts for the relationship between samples with Principal Components
- Need to know how many components to correct for

EMMAX

- Adjusts for the relationship between samples using a kinship matrix
- Approximates the variance components and uses the same variance for all probes

- Tests a single loci at a time

MLMM
- Adjusts for the relationship between samples using a kinship matrix

- Approximates the variance components and uses the same variance for all probes, but re-
computes at every step

- Stepwise EMMAX, assumes multiple loci are associated with the phenotype

GBLUP

- Adjusts for the relationship between samples using a kinship matrix
- Computes allele substitution effects to determine best genomic predictors of the phenotpye

GOLDEN HEL:X
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Method Comparison

Population | Multiple Uses Kinship | Output Compute Compute
Structure Loci as Random Random Allele P-Value
as Fixed Effect Effect Substitution
Effect Component | Effects
Regression Yes No No No No No Yes
with PCA
EMMAX Yes No Yes Yes No No Yes
MLMM Yes Yes Yes Yes No No Yes
GBLUP No No Yes* Yes Yes Yes No

* Uses EMMA for REML estimates
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Regression with PCA method overview

= First compute the principal
components

Assumes the first few components are
associated with the largest batch effects

including population structure, plate effects,

etc.

= Decide how many components to
correct for

= Either run regression on PCA
corrected data or on genotype data
Including top principal components
as fixed factors

GOLDEN HEL:X
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Population Structure and Eigenanalysis

Nick

Patterson'”, Alkes L. Price’?, David Reich'?

1 Broad Instiute of Harvard and MIT, Cambridge, Massachusetts, United States of Amenica, 2 Depanment of Genstics, Hanard Medical School, Boston, Massachusetts,
United States of America

Current methods for inferring population structure from genetic data do not provide formal significance tests for
population differentiation. We discuss an approach to studying pepulation structure (principal compenents analysis)
that was first applied to genetic data by Cavalli-Sforza and colleagues. We place the method on a solid statistical
footing, using results from modern statistics to develop formal significance tests. We also uncover a general *phase
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David Reich'-
Population stratif cation—allele frequency di

sale. Our method

Principal components analysis corrects for stratification
in genome-wide association studies

Alkes L Price'”, Nick ] Patterson’, Robert M Plenge’”, Michael E Weinblatt’, Nancy A Shadick® &

lfferences between cases and controls due to systematic ancestry differences—can
cawse spmmus manmsm disease studies. We describe 2 meﬂmd that enables explicit defedtion and correction w(pqnlx-m

i 1o explicitly model ancestry di

I-etmass and mmk. 11: reutng m-re:nm is spe\:ﬁc to a andidate marker's vinimm in frequency across mml

to detect frue Our simple, efficient approach

4 T\upuhuun suauﬁaucn—allgle frequency differences between cases

ancestry dif cause spur-
ous associations in disease studies'. Because the effects of stratifica-
tion vary in proportion te the number of samples®, stratification il
e an increasing problem in the large-scade asociation studies of the
future, which will analyze thowsands of samples in an effart to detect
commen genetic variants of weak effect.

The two prevailing methods for desling with stratification are
gmomic control and stuctued asocistion™4 Alhough genomic
& control and structured asnciation have proven useful in 3 variety of

<contexts, they have Emitations. Genomic contral corrects for stratifi-
Edﬂon by adjusting asociat jon statistics at each marker by a uniform

rall inflation factor. However, some markers differ in their allele
frequencies across ancestral populitions more than others. Thus, the
uniform adjustevent applied by genomic control may be insufficient at
markers having unususlly strong differentistion across ancestral
populations and may be superfluous ar marlers deveid of such
differetiation, leading to a loss in power. Stuctured asochtion
wes 2 program such as STRUCTURE™ to assign the sumples i
discrete subpopulation custers and then aggregaies evidence of
association within each duster. If Factionsl membership in more
than one cluster is allowed, the method cannot currently be ap plied
genome-wide awociation studies becawse of its intensive computa-
‘tionsl cosi on large daia sets. Furihemmore, ssignments of individuab
10 clusters are highly sensitive 1o the number of clusters, which is not
well defined™**

We popae a method 1o detect and comect for population
stratification that addresses these limitstions. Our method, EIGEN-
STRAT, consists of three steps (Fig. 1). First, we apply principal
components analysis!7 o genaiype daia (o infer continuous axes of

o can easily be applied to dm studies with hundreds of thousands of markers.

genetic variation. Intuitively, the axes of variation reduce the dat toa
small number of dimensions, describing x5 much varbbility s
possibie; they are defined s the top eigenvectors of 4 covarina:
i Betyeen samples (sce Methods). [n i sts with ancestry
differences es of f

interpetaton: for emple, an axis descrbing 3 northwes-sputhexst
dine in Europe would have values that gradually range from psitive
fine samnples from northwest Europe, to near zers in central Furope, 1o
negative in southesst Europe. Second, we continuously adjust
genotypes and phenotypes by amounis attrbutable to ancestry
along each axis, via computing residudls of lnew regresions
intuitively, this creates & virtual set of matched cxes and controls
Third, we compule asociation stalistics wsing ancestry-adjusted
sgenotypes and phenotypes.

The EIGENSTRAT method has arisen out of our systematic
exploration of the wse of principal components analysis in 3 more
general population genetic context. Principal components analysis was
originally applied 1o genetic dara 10 infer worldwide axes of human
genetic variation from the alkle Fequencies of various popula-
tions™1% We have further developed this approach in a paralld
paper (N.IP, ALP. and DR, unpublished data), focusing instead
on individusl genotype data and placing the method on a fim
statistical footing by rigorously assigning statistical significance 1o
each axis of variation?®-2. EICENSTRAT applies this teolkit 1o analyz
populition structuse in the context of disease studies

Correcting for stratifieation using continuous axes of varkation has
several advantages. Continuous axes provide the most useful descrip-
tion of within<ontinent genetic variation, 3ccording to recent stu-
dies??, Because our continuous axes are construcied (o be orthogonal,
results are insensitive o the number of awes inferred, s we verify

. Horerd Meci) chool, B, Masachuets 02115, USA. “Rogam in Metical s Popdtion Geetics, G st of M1 ad
Moot T Jmquu-m. e, Memsmchunetts (2142, USA. *Dvision of Rhsum;
Massciumetis 02115, USA. Cormes pondence o be scmssed 1o AL P {assice@bmad. mit edal.

Recsed 23 Mamh; acrepted 21 June; publihes online 23 July 2006, doi: 10,1 0384ng] 847

ieklcgy, Il gy v Al lengy, Begham snd Wemen's Hospital, Bexon,

VOTONE 78 NOMBER 7] AUCUST 7006 RATURE GERETI




EMMAX method overview

= Published in 2010 by the authors
of EMMA

= Assumes a complex disease and
that all SNP loci have a small
effect on the phenotypic trait by
themselves

* |nstead of re-computing the
variance components for every
SNP (under the Alternative
Hypothesis) computes it once

under the Null Hypothesis
= Null Hypothesis: ¢z = 0;
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Variance component model to account for sample structure in
genome-wide association studies

Hyun Min Kang'28 Jae Hoon Sul*®, Susan K Service*, Noah A Zaitlen®, Sit-yee Kong®,
Nelson B Freimer*, Chiara Sabatti, and Eleazar Eskin37

'Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor,
Michigan, USA

Center for Computational Medicine and Bioinformatics, The University of Michigan Medical
School, Ann Arbor, Michigan, USA

3CDmputer Science Department, University of Califomia, Los Angeles, California, USA
“Center for Neurobehavioral Genetics, University of California, Los Angeles, California, USA

“Department of Epidemiclogy and Biostatistics, Harvard School of Public Health, Boston,
Massachusetts, USA

“Department of Health Research and Policy, Stanford University School of Medicine, Stanford,
Califomia, USA

"Department of Human Genetics, University of California, Los Angeles, Califomia, USA

Abstract

Although genome-wide association studies (GWASs) have identified numerous loci associated
with complex traits, imprecise modeling of the genetic relatedness within study samples may
cause substantial mflation of test statistics and possibly spurious associations. Variance
component approaches, such as efficient mixed-model association (EMMA). can correct for a
wide range of sample structures by explicitly accounting for pairwise relatedness between
individuals, using high-density markers to model the phenotype distribution; but such approaches
are computationally impractical. We report here a vanance component approach implemented
publicly available software, EMMA eXpedited (EMMAX), that reduces the computational time
for analyzing larze GWAS data sets from vears to hours. We apply this method to two human
GWAS data sets, performing association analysis for ten quantitative traits from the Northern
Finland Birth Cohort and seven common diseases from the Wellcome Trust Case Control
Consortinm. We find that EMMAY outperforms both principal component analysis and genomic
control in correcting for sample structure.

GWASSs may utilize either case-control cohorts to test for associations with diseases or
population cohorts to identify associations with quantitative traits. In both cases. it 1s




MLMM method overview

“Multiple-Loci Mixed Models”; N N
stepwise EMMAX T T -

An efficient multi-locus mixed model approach for genome-wide
association studies in structured populations

Vincent Segura’-2”, Bjarni J. Vilhjaimsson'3", Alexander Platt’?, Arthur Korte!, Umit
Seren', Quan Long’, and Magnus Nordborg!.®
IGregor Mendel Institute, Austrian Academy of Sciences, Vienna, Austria

Anstitut National de la Recherche Agronomique, UR0588, F-45075 Orléans, France

Assumes complex diseases where
multiple loci are associated with the - o otesen, o o N
phenotype w—

Population structure causes genome-wide linkage disequilibrium between unlinked loci, leading to
statistical confounding in genome-wide association studies. Mixed models have been shown to
handle the confounding effects of a diffuse background of large numbers of loci of small effect
well, but do not always account for loci of larger effect. Here we propese a multi-locus mixed
mode] as a general method for mapping complex traits in structured populations. Sinmulations
suggest that our method outperforms existing methods. in terms of power as well as false
discovery rate. We apply our method to muman and Arzbrdopsts thaltana data. identifying novel
associations in known candidates as well as evidence for allelic heterogeneity. We also
demonstrate how a priors knowledge from an A. thaliana linkage mapping study can be integrated

Cofactors are selected in a stepwise
fashion by choosing the probe with e e
the SmaHESt p-Va|Ue INTRODUCTION

With the increasing availability of genomic polymorphism data, genome-wide association
studies (GWAS) are becoming the default method for investigating the genetics of
quantitative traits. Typically, GWAS are carried out using single-locus tests to identify

X JIRULIAEMS

X YIRULIDIEMS

associations between polymorphisms and traits in either case-control populations or cohorts.
However, both designs are subject to confounding by population structure, leading to an
inflation of test statistics and a high false posifive ratel2. Several methods have been
proposed to deal with this issue, including genomic control’, structured association®,

Since EMMAX is used, genetic and : L
error are computed once for each e e o e

rank of the polymorphisms, as they are subject to the same correction. In the structured

Step . *These authors contribated equally to fhis work.

AUTHOR CONTRIBUTIONS Al authors contributed to desigring the study. V.S. 2nd B.1V. ran the simulstions and analyzed the
data. V5., B.V., and MN. wrote the paper with input from A P, A, US., nd QL.
commsmmmmmmMMmmMmss

URL: MLMM bs: baen Python and R The R version relies on the original EMMA
implementation!0 and ean be Mm,um oynin. gmi oeaw.ac athome/tesources/mimm. The Python version ean be obtzined at

WXI)-JIRULARMG

hnpr gty comflbal masmoganm. The Python verson reies besvly o the sipy package (ktp: ‘e scipy.cngf) which can be
] library

Genetic and error variances are then S B el S
re-estimated at for every step
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GBLUP method overview

= Best Linear Unbiased
Predictor (BLUP) provides
residual errors

Residual Breeding Values
for plant/animal studies

= Estimates of allele
substitution effects

= Pseudo-heritability estimate
can be used to compare the
method with other methods

= Uses a genomic relationship
matrix which computes faster
than IBS

GOLDEN HEL:X

= Accelerating the Quest for Significance™

J. Dairy Sci. 91:4414-4423
doi:10.3168/jds.2007-0980
© American Dairy Science Association, 2008.

Efficient Methods to Compute Genomic Predictions

P. M. VanRaden'

Animal Improvement Programs Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705-2350

ABSTRACT

Efficient methods for processing genomic data were
developed to increase reliability of estimated breeding
values and to estimate thousands of marker effects si-
multaneously. Algorithms were derived and computer

chromosome segments of greater me;
al., 2001; Schaeffer, 2006). Single nu
phism (SNP) markers can now cover
high density and are inexpensive t
tions based on SNP genotypes can be
as DNA can be obtained, which allow!
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Implementation and accuracy of genomic selection

Jeremy E. Taylor *

Division of Animal Sciences, University of Missouri, Cobumbia, MO 65211 LSA

ARTICLE INFO

ABSTRACT

Article hisory:
Received 1 August 2012
Accepted 17 February 2013
Available online g

Reywords:
Genomic selection

‘Genomic selection is emerging as a powerful tool for the estmation of hreedmg wvalues in plant and animal
‘breeding While many analytical approac for of high-density sin-
e nucleotide polymorphism (SNP) effects, within the framewori:of best linear unbiased esimation, geno-

mic selection is equivalent to the prediction of breeding values for individuals with no phenotypes, forwhich
‘the theoreticl solution was first published in 1974, Genomic selection simply replaces the pedigree-derived
numerator relationship matrix with the marker-derived realized genomic relationship matrix, an approach
in 1997. The advance facilitated by the availability of high-density SNP genotypes is the ability

Single nucleotide polymorphisis,
Genamic relationship matrix
Accurxy

0 precisely estimate realized relationship coefficients among individuals regardless of the availability of ped-
igree information or the history of selection that has been applied 1o the population. However, genomic re-
lationship coefficients are usually estimated assuming the independence of SNP genotypes, thus ignoring
the effects of linkage disequilibrium, and the wtilized SNPs are invariably ascertained to be common variants
‘within the specie’s genome which leat to the overestimation of relationship e ficients. The accuracy of the
produced genomic estimated breading values (GEBV) is often evaluated using variously formed validation
populations otyp that were not used for the estimation
o SNP effects in the training population. However, GEBV accuracies are shown here to be a function of the
accuracy of training population GEBV and the maghitudes of genomic relationships between individuals in
the training and validation populations. Consequently, genomic selection is ideally suited to populations in
‘which highly accurate GEBV are available for waining population individuals and whose marker-selected
progeny £0 0n to produce phenotypes and reenter the training population which then becomes dynamic.
‘Conversely, genomic selection is not wel suited to the identification of elite individuals within families
that have not historically contributed to breeding programs, to static training populations, of to training
and implementation in distantly related populations Thus, the implementation of genomic selection for
wstly or difficult o measure phenotypes such as feed e ficiency ordisease resistance will require the periodic

populations for the EBV prediction equations or the identification
of the causal variants which underlie variation in these waits. The exponentially reducing cst of whole
may atleast the large effect variants.

© 2013 Elsevier BV. All rights reserved.

1. Introduction

candidates within an implementation population. The term training
population arises from the idea that some form of model is “trained”

Genomic selection (GS) was first proposed by Meuwissen et al
(2001) as a method for the prediction of breeding values of ing
uals without phenotypes but that had been genotyped with a
high-density marker panel. The approach is based upon the simulta-
neous estimation of allele substitution effects (ASE) for each of the
markers using linear or non-linear Bayesian models applied to pheno-
types or estimated breeding values (EBV) available on genotyped
individuals comprising 2 training population, the determination of
the accuracy of the derived prediction equations in an independent
validation population and application of the prediction equations to
generate genomic estimated breeding values (GEBV) in selection

on genotypes and phenotypes to produce estimates of ASE and GEBV.
The purpose of the validation step is to use phenotypes available on
an independent set of genotyped individuals to those used in the
training population to produce an estimate of the accuracy of the
GEBV that will be generated for the selection candidates. Consequent-
1y, the individuals sampled to form the validation population should
be representative of the selection candidates in the sense that the
accuracies of GEBV produced for the validation population should
reflect the accuracies of GEBV produced for the selection candidates
in the implementation population. Fig. 1 shows the purpose of each
of the populations and illustrates the difference between static and

exes early in life. Application of gex
airy cattle has just begun (de Roos et
eck, 2007; Guillaume et al., 2008).
nd strategies were compared by Me:
Computer algorithms and progra
ncorporate genomic data into geneti
process the rapidly expanding num
ypes. Previous algorithms for includ]
it effects individually rather than =
t additional polygenie effects becau
e of the genome was not yet com
1.. 2007). Iterative algorithms such
nd preconditioned conjugate gradie
stimate allele effects (Legarra and N
ewer numerical problems may resu
ersion of variance matrices or mixe
Lee and van der Werf. 2006). Geno
an be included in multitrait deriy
rograms (Zhang et al., 2007).
Objectives of this research were 1|
uter methods to include genomic ds
to apply the methods to simulatd
Iolstein and Jersey pedigrees, and 3
n reliability from genomic prediction

MATERIALS AND METH

Predictions were computed by ling
ystems of equations. The linear pre

[par_allmarkers conrvitnred eanalls




When are Mixed Models Good to Use

= Have a dataset with inbreeding or some population structure

= Dataset Is filtered down to samples and SNPs with:
- “Good” Call Rate
- SNP MAF > 0.05 (common variants)

= Whole Genome Sequencing data is fine if looking for
common variants

* NOT for RARE VARIANT ANALYSIS!!!!
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Which Model to Use?

Regression
with PCA

« Homogeneous datasets or datasets with simple structure

E M M AX *Complex diseases on a structured population, assuming
all loci have a small effect on the trait

» Complex diseases on a structured population, assuming
M LM M there are several loci that have a large effect on the trait
and the rest have small effects on the trait

» Obtain estimated breeding values, rank allele
substitution effects to find QTL or find genomic
relationship matrix in structured populations

GBLUP

»
GOLDEN HEL:X
L
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Mixed Models In SVS

GitHub This repository - Search ortype acommand @  £¥ Explore Features Enterprise Blog m Sign
= Derived from the

bvilhjal / mixmogam * Star <2| P Fork ¢1
-
m IXm O g am pyt h O n 4~ Code Network Pull Requests 0 Issues 0 Wiki Graphs
branch: master  ~ Files Commits Branches 1 Tags

package ———

bjarni.vilhjaimsson 3 months ago An example for two environments added

1 contributor

file | 35lines (24 sloc) | 1.465 kb Edit Raw Blame History

- | I | | I m
By B V| Ja sSSson,
1 Author: Bjarni J. Vilhjalmsson (bjarni.vilhjalmsson@gmail.com)
‘ :Oal Ith Or Of M I M M 3 This package contains tools for performing mixed model association mapping, originally developed for Arabidopsis
4 thaliana, but can also be applied to other

organisms, including Humans. Suggestions and code contributions are welcomed.

The current version is 8.1

paper | e i ceemt .

* scipy

* matplotlib
* RSpy (this is not necessary for most functionality)

There are 8 files
- snpsdata.py: Datastructures for storing and manipulating genotype data.
- dataParsers.py: Code for parsing genotype files into genotype data structures.

17 - phenotypeData.py: Datastructures for storing and manipulating phenotype data.
b e - - liner_models.py: Code for linear regression and simple mixed models (for up to 3 covariance matrices).
l I I I IeS rOI ' l I I ”XI ' log a' ' l - kinship.py: Code for estimating kinships.

gwaResult.py: Code for manipulating GWAS results, including plotting Manhattan plots.
analyze_gwas_results.py: Code for plotting QQ-plots among other things.

examples.py: Examples for how to perform GWAS using mixmogam.

simulations.py: Some basic code for simulating genotypes and traits, for testing purposes.

25 There is A. thaliana data in the at data,

GoOLDEN HEL:Xx * V. Segura et al. “An efficientmulti-locus mixed model approach for genome-wide association
T e Qe studies in structured populations” (Nat Genetics, 2012)



SVS Implementation

= Provides user friendly interface for:
GOLDEN HEL:X
- GBLUP SNP & VARIATION SUITE &7

- Mixed Linear Models Analysis

* Runs directly from a spreadsheet and has an options dialog
where you can select your fixed factors and other
parameters

= Visualization of results in SVS’ Genome Browser is quick
and easy

= Optimized so that analyses run fast

GOLDEN HEL:X
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Why Sheep? What about Humans or...?

= The Sheep HapMap dataset was = Other datasets used by Mixed

chosen because of Model papers include:
- the large number of samples and - WTCCC (all diseases including RA
- the large number of breeds and T1D)

- NFBC66

» The dataset was available for
public use on request from the
ISGC

Arabidopsis thaliana dataset
Zea maize dataset

o Various cattle datasets
= The dataset was sufficiently

structured enough to demonstrate | | * Mixed models used on datasets

all of the four methods not expected to have family
structure (WTCCC and NFBC66)

GOLDEN HEL:X
Accelerating the Quest for Significance™




First a little about the dataset...

= Sheep HapMap
SNP50 Breedvl dataset

* [llumina 50k SNP array

= 49,034 markers were left
after filtering by the
consortium

= 110 unmapped markers

= Only 1 marker in Chr Y

GOLDEN HEL:X

Accelerating the Quest for Significance™

Interr

International Sheep
Genomics Consortium

The International Sheep  Genomics
Consortium is a parinership of scientisis
and funding agencies from Australia,
Austria, Brazil, China, Finland, France,
Germany, Greece, India, Iran, Israel, Italy,
Kenya, New Zealand, Norway, Spain,
Switzerland, Turkey, United Kingdom and
United States to develop public genomic
resources that will help researchers find

What's New

o Access Detais for the new High

Densty (HD} SHP Chi

ISGC SNP Loci For Parentage

ISGC Releases Sheep Genome

Assembly OARv2.0

« I3GC Presentations from PAG
conference 2011

« Sheep Community submits White
Paper to USDA

genes associated with production, quality and disease traits in sheep.

The project commenced informally in 2002 with the creation of a high quality ovine
BAC library, and was built on an existing collaboration for the International Mapping

Flock that was created nearly a decade earlier.

® Copyright 2002-2010, International Sheep Genomics Consortium
This site uses the Mionic menu system




Sample Statistics/Filtering

k_ Fts o Eded Pricpl Componets(Addiive Mode) against = 54501 (137 (=] B [z
= Removed samples from 03 X B DBy rawm oo
Boreray & Soay breeds o | o g

- 72 Breeds & Cross-
Breeds left

= Imputed gender from
heterozygosity rates in the
X chromosome

- Males: 1611 "0-03.‘ P IEIVU:;.;W';.MI " om '004—
- Females: 1081

y A
i EV = 345863
2 2 e 2
2 S £ S o
'\“\' -¢'- L L
1

GOLDEN HEL:X
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IBS and PCA on Marker Subset

= Filtered down to MAF > 0.05

= LD pruned
- R? > 0.5 (CHM method)
- Window of 50 markers
- Step size of 5 markers

= Left 45,117 total markers
(44,057 autosomal markers)

= Performed IBS & PCA
analysis on remaining
samples and markers

GOLDEN HEL:X
Accelerating the Quest for Significance™




Sheep HapMap PCA Plot

Plots from SNP50_Breedvl PED Dataset + Principal Components (Additive Madel) - Sheet 1 against EV = 45.903 [68]

File  View Help

A X B DB xaszon oo

- 0.0408248

B |, Family ID == 'AfricanDorper’ m |, Family ID == AfricanWhiteDorper' [ ]

W |, Famiy D ==

‘AustralianCoopworth' W |, Family ID == AustralianIndustryMerino’

, Family ID == "Afshari’
, Family ID == "AustralianMerino’

, Family ID == ‘Altamurana’
, Family ID == ‘AustralianPollDorset!

=
=1
frd

26.1637

EV

-0.01

-0.02

-0.03

-0.02 0
EV = 45.903

0.02

0.04

GoLDEN HEL:X
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Simulated Phenotype

= Filtered markers down to
those within predicted gene
regions

= Randomly selected 25 causal
markers

= Set h? = 0.4

= Used a y? distribution for the
effect sizes

= Added an error adjustment
from a skewed normal
distribution

GOLDEN HEL:X
Accelerating the Quest for Significance™

0
Phenotype




Analysis steps

Marker Filtering SEQ?AZ

Call Rate - Call Rate -
- MAF
- LD Prune
for
Kinship,
PCA

GOLDEN HEL:X
Accelerating the Quest for Significance™

Compute Compute
Kinship Principal
Matrix Components

Perform : ‘
Mixed Model \/R'Sel;ﬁll'tzse
PUEWSIS

IBS, or - Onfiltered, - EMMAX - P-value
IBD, or LD pruned - MLMM plot
Gen Rel Dataset - GBLUP - Venn
Matrix - X Chr Diagram

filtered out
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Agenda

il Background of GWAS Approaches

28 Review of Select Mixed Model Methods

e) Mixed Models in SVS

Demo

Compare Results

GOLDEN HEL:X
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Compare the methods

= Top 1000 markers show some overlap in results

-
3] Figure 1
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\_,._ Plots from Compare Spreadsheets - Sheet 1 against Top N Markers [62]
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Q Plots of methods

Plots from Regression Results against expected -log10 FvR Model P [87]
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Plots from P-Values from Single-Locus Mixed Model + Expected P-Value against -log10(Expected P-Value) [80] =
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Conclusion

= Mixed models can be a
useful tool when applied
appropriately.

= Use the method best suited
for your data.

= Mixed models are not the
“cure all” for bad data.

= Watch for a blog post to
come out later this week on
more mixed model methods!

GOLDEN HEL:X
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our 2 snps...

Home

All Excited About Mixed Models

Posted on May 29, 2013 by Jessica Vionas

Last month, Bryce Christensen wrote 3 little about mixed models and their application in GWAS. He promised that
this analysis would be available in SNP & Variation Suite (SVS) “soon,” but didn't elaborate. We are now excited to
announce that three mixed model methods are available in SVS: GBLUP, EMMAX, and MLMM!

To help demonstrate their utility and when to use one over the other, Greia Linse Peterson (Senior Statistician) will be
giving a webcast next Wednesday, June 5th at noon EDT. Interest is certainly high as we've had over 450 people
register already! There's sure to be a broad range of expertise in the audience, from beginner to definitive experts, so

be sure to join us

Speaking of definitive experts, Eleazar Eskin who heads up the group at UCLA that authored EMMA and EMMAX, let us
know that he plans to listen in on Wednesday too. He recently shared a blog post he wrote that provides a quick
overview of mixed models, especially in relation to their utility in model organisms. Check it out: Mixed Models and

Population Structure. Hopefully, he won't give Greta too much of a hassle in the Q&A portion of the webcast!

Be sure to register now! https (www?2_gotomeeting.com/register/792047594

‘We look forward to “seeing” you there!

Posted in News, events, & announcements | Leave 3 comment

GOLDEN HELEX

About

Welcome to Our 2 SNPs ®, a blog
by Golden Helix (3 leading
bioinformatics company) that seeks
to inform our customers and the
genetic research community as a
whole on the latest in analysis
methods, best practices, and the
future of the industry.

Please, don't be shy! We want to
hear your two SNPs as welll Also, if
there is a specific topic that you
would like to hear more about,
please contact us at
info@goldenhelix.com. For mare
information about Golden Helix, visit
our main site
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) Do You Have
Any Questions?

Use the Questions pane in your
GoToW ebinar window
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IBS vs Genomic Relationship Matrix

3
e e b

0% XE0 B s

ox
v WL Gt

- b st~ 0= 1800 508

Top N Markers

[%] Figure 4 E=ET)
¢ +BnkRs [0 PRE

GOLDEN HEL:X

Accelerating the Quest for Significance™

x=0.464516 y=0.217402

Kinship Matrix

1,000

Genomic Relationship Matrix
1,000




