

Fine-tuning CNV Analysis for the Clinical Analysis of NGS Samples

otech Technolo Providers

Top 10 Analytics Solution Providers

Hype Cycle for Life sciences

Please enter your questions into your GoToWebinar Panel

Golden Helix – Who We Are

F

Golden Helix is a global bioinformatics company founded in 1998.

Variant Calling Filtering and Annotation Clinical Reports CNV Analysis Pipeline: Run Workflows

Variant Warehouse Centralized Annotations Hosted Reports Sharing and Integration GWAS Genomic Prediction Large-N-Population Studies RNA-Seq Large-N CNV-Analysis

SNP &

Cited in over 1100 peer-reviewed publications

Enabling Precision Medicine

5

Over 350 customers globally

When you choose a Golden Helix solution, you get more than just software

- REPUTATION
- TRUST
- EXPERIENCE

- INDUSTRY FOCUS
- THOUGHT LEADERSHIP
- COMMUNITY

- TRAININGSUPPORT
- RESPONSIVENESS

- INNOVATION and SPEED
- CUSTOMIZATIONS

CNVs in Clinical Testing

- Critical evidence needed for many genetic tests
- Common driver specific cancers, causal hereditary variation
 - EGFR Exon 19 deletion common in lung cancer
 - PIK3CA Amplification in breast cancer

Large events used heavily in diagnostics

- Chromosome 13 deletion common in melanoma
- Autism Spectrum Disorder (ASD)
- Developmental Delay (DD)
- Intellectual Delay (ID)

CNV Detection

Chromosomal microarray

- Current best practice
- Slow
- Additional expense
- Only detects large events

CNV calling from NGS data

- Calls from existing coverage data
- Detects small single-exon events
- Provides faster results, simplified clinical workflow

CNV Detection via NGS

- CNVs are called from coverage data
- Challenges
 - Coverage varies between samples
 - Coverage fluctuates between targets
 - Systematic biases impact coverage
- Solutions
 - Data Normalization
 - Reference Sample Comparison

CNV calling in VarSeq

VAF provides supporting evidence

- Values other than 0 or 1 are evidence against het. Deletions
- Values of 2/3 and 1/3 are evidence for duplications

Segmentation

- Metrics are noisy over large regions
- Outliers cause large events to be called as many small events
- Addressed using segmentation:
 - CNAM Optimal Segmentation
 - Regions containing many events are segmented
 - Small events sharing a segmented region are merged

LoH Calling

- Large LoH events need to be interpreted in any gene test that covers large CNVs
- New Loss of Heterozygosity(LOH) detection based on H3M2 (Magi *et al.*)
- Calls LoH events using Hidden Markov Model (HMM)
 - Observations are variant allele frequencies
 - States are either Homozygous or Non-Homozygous

P-Values

P-Values

- Probability of z-scores at least as extreme assuming the event targets are diploid
- Computed using Student's t-test
- Distribution of event z-scores compared to distribution of diploid targets

Quantifies CNV Call Confidence

- Values below 0.01 indicate high confidence calls
- Values above 0.01 indicate lower confidence calls

 $p = 1.4 \cdot 10^{-32}$

Karyotype Notation

F

- Karyotype notation provided for large cytogenetic events
- Karyotypes provided at both event and sample level
- Uses common notation
- Specifies chromosome, arm, and band for each mutation

46,XY,dup(1)(q21.1q43)

QC Events

F

Low quality events can be flagged if

- Event targets have low coverage
- There is high variation between samples at event targets
- Event cannot be differentiated from noise at a region

Samples can be flagged if

- The sample does not match the references
- The sample has extremely low coverage
- There is high variance across the target regions
- Filtering flagged events improves precision

Reference Samples

- Match references are chosen for each sample
- Samples with lowest percent difference chosen
- Performance affected if controls don't have matching coverage profile
- Samples are flagged if the average percent difference is above 20%

Requirements

100x Coverage

Reference samples

- Recommend at least 30 references
- Minimum of 10
- From same platform and library preparation
- Gender matched references required for non-autosomal calls

Non-Autosomal Normalization

Sex is inferred from coverage data

- Sample is inferred female if
 - Y chromosome coverage is low
 - X chromosome coverage matches the autosome
- Otherwise the sample is inferred to be male
- Samples are matched on inferred sex
- Same-sex samples are used for normalization of non-autosomal chromosomes

Sources for Annotating CNVs

CNV calls in Populations:

- 1000 Genomes Phase3 Large Variants
- ExAC per-sample CNV calls
- DGV large-cohort studies

Clinical Interpretations:

- ClinVar Large Variants
- ClinGen (Previously ISCA)

Genes

- Gene track, which transcripts/exons
- Special considerations considering large sizes

Regions

- Genomic Superdups (Large Scale)
- Low Complexity Regions (Smaller Scale)

Annotation Algorithms: Overlapping Regions

- Not expect exact matches
- Need metric of "sameness"
- Jaccard index:
 - "similarity coefficient"

$$J(A,B)=rac{|A\cap B|}{|A\cup B|}$$

- For fully overlapped regions, the percent overlap of the smaller to the larger
- Default value of 20% for annotations
- If set to 0%, then any overlap matches
- If set to 100%, then exact matches

Please enter your questions into your GoToWebinar Panel

2018

ACMG Annual Clinical Genetics Meeting

APRIL 10–14 | EXHIBIT DATES: APRIL 11–13 CHARLOTTE CONVENTION CENTER | CHARLOTTE, NC

We're Exhibiting at ACMG 2018

Find us (and the t-shirts) in booth 1306!

Please enter your questions into your GoToWebinar Panel

