
“Dammit Jim, I’m a doctor, not a bioinformatician!”

Do you ever feel like Dr. McCoy on Star Trek, where your job and 
expertise is to do x, but to achieve your goals you also have to 
do y and z, which you either don’t want to do or don’t have the 
skills to do? Genetic researchers are faced with this every day as 
they are expected to design experiments, develop methods, write 
software that will perform these methods, teach students, write 
grants, work towards tenure, make life-changing discoveries, 
follow statistical best practices, and, in their spare time, publish 
regularly. What are the causes and symptoms of this reality? And 
what is the eff ect these demands have on productivity?

This whitepaper is wide ranging, so I’ll fi rst summarize it at a high 
level and then drill down into the many facets of the systemic 
problems our fi eld faces for research productivity. We’ll then look 
at the obstacles to productive bioinformatics-driven genetic 
research through the lenses of skillset, mindset, toolset, and their 
interactions. Then we’ll explore how facets of the academic toolset 
and mindset are at cross-purposes with reproducible research 
and explain how this, in turn, inhibits our practice of the scientifi c 
method and its concomitant productivity. Within this framework, 
I will examine intriguing issues such as:

  The degree to which bioinformatics expertise has become 
rate-limiting for our fi eld.

  Cycle-time and the cognitive impact of inserting 
bioinformaticians between researchers and their data.

  Consequences of reputation as the prime metric of 
academia.

Finally, I’ll share my thoughts on a solution—making the case 
that improved tools and practices can dramatically increase 
productivity for all stakeholders.

Skillset, Toolset, Mindset

Productivity in any fi eld is a function of its skillset, toolset, and 
mindset. A master carpenter can’t accomplish much without his 
tools. A box full of tools without the skills to use them will not 
get a house built. And if a skilled carpenter with a great toolset 
wakes up one morning realizing he never liked carpentry and 
has been doing it only to please his father, then he doesn’t have 
the mindset to be a productive carpenter in the long run. These 
three productivity components interact, support, and modify 
each other. The advent of power tools advanced carpentry and 
required new skillsets and mindsets to obtain productivity gains. 

Accelerating the Quest for Significance 

New skills and techniques arose to use the new tools, and in turn, 
catalyzed toolset innovation to support continuously improving 
skillsets. The mindset of the artisan also gave way to embracing 
process and automation.

What, then, does the skillset, toolset, and mindset look like in our 
fi eld of genetic analysis, and how do they interact to impact our 
productivity?

Skillset

In academia, the free software tools used today require highly 
skilled bioinformatics professionals, which are often in short supply. 
A recent survey of International Genetic Epidemiology Society 
members (Krishnan & Wilson 2010) showed that 73% reported an 
inability to fi nd qualifi ed domestic applicants to fi ll positions. As 
we will examine later, almost every academic package in genetic 
analysis requires statistical, programming, command-line, and 
data manipulation capabilities that fall outside the competency of 
many small to mid-sized labs and their researchers who seek to 
utilize genetic information for biological research. Even in the case 
where these labs have the resources to hire the expertise, it simply 
may not be available.

To perform research in this fi eld, one must have competence in 
several disciplines: computer science, statistics, and genetics. Why 
does someone virtually have to be a computer programmer in 
order to perform genetic research? We need only to look at the 
state of our toolset.

by Christophe Lambert, Chairman & CEO of Golden Helix

Academic Software, Productivity, and Reproducible Research

For those of you not familiar with the constant dillema of Dr. McCoy, 
check out the following youtube video: http://www.youtube.com/
watch?v=pGMLCxKPMSE
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Toolset

The NIH recently reached out with both an academic and small 
business (SBIR) RFP to address some pressing needs in software 
tools and infrastructure for high-throughput sequence research.  
The RFP does an excellent job of characterizing the large defi cits 
in toolset:

…[Laboratories] face a serious challenge because they do not 
have access to readily usable software tools or the informatics 
expertise necessary to take best advantage of the new sequencing 
capabilities.  There is thus a need for robust, well-documented, and 
well-supported software tools for processing and analyzing the 
data that individual labs can now generate, and the demand for 
such software tools will only grow.... While the sequence analysis 
informatics tools [large centers] have developed are technically 
available to others, there are signifi cant practical barriers to their 
use by the wider community. Most of the “in-house” informatics 
tools developed so far are optimized only for local applications.  
Furthermore, the software may not be well-documented, and it 
does not generally have adequate documentation or user support.  
It may only run on large, local computational clusters (something 
many researchers do not have), and may not, for example be 
useful for cloud applications, or operate on multiple platforms. It 
may require a dedicated group of local bioinformatics experts to 
maintain or update. In general, the centers have not been supported 
to develop their tools to make them readily transferrable to other 
groups, especially groups operating at a smaller scale and/or that 
do not have extensive dedicated local bioinformatics support.  This 
situation has the potential to create a bottleneck to the ability of 
the growing number of investigators who wish to analyze sequence 
data that they have generated in pursuit of their own projects. The 
issue promises to become even more serious because the costs of 
producing sequence data continue to drop rapidly, and will soon 
be exceeded by the costs of analysis.

Unfortunately, the problem of unusable software and the need 
for experts to drive them is not new, nor is it unique to the fi eld 
of high-throughput sequencing. Rather, it is a systemic issue that 
has plagued the broader fi eld of genetic research for perhaps as 

long as the fi eld has been producing software. Foundational to 
this problem is the fact that academia is the birthplace of most 
new statistical and computational methods in genetic research. 
Yet, for the most part, these methods are embodied in simple 
standalone programs that are not supported, maintained, or well 
documented, and have an unusable or non-existent graphical 
user interface (GUI).

Further, with a plethora of data formats, it becomes painful to use 
multiple programs in combination.  This results in long learning 
curves, ineffi  cient workfl ows, sporadic technology transfer to 
industry and, ultimately, delayed lifesaving research. Also, the 
uncertainty scientists have that they are getting accurate results 
with a new program creates a barrier for them to use new and 
potentially powerful innovations. Finally, when professors who 
produce software don’t get tenure, when their research interests 
shift or lose funding, or when students leave, software support 
ends. This innovation ”abandonment,” along with the reinvention 
of the wheel that takes place as innovators unnecessarily re-create 
software infrastructure (such as data management, graphical 
components, and statistical libraries) represents a large waste of 
time (and federal funds).

In January of this year, we set out to assess the level of ongoing 
maintenance and upgrades of academic genetic analysis software 
as well as their usability. To do this, we performed a careful search of  
the Laboratory of Statistical Genetics at Rockefeller list of genetic 
analysis software, containing 564 packages. We examined roughly 
half of the software packages (those beginning with letters A 
through L) to establish the last date of update, determined by the 
most recent public release of the software or documentation as a 
measure of active maintenance and development. In some cases 
the links were out of date, and Google was used to fi nd the new 
package location, if any. The most common and accurate way to 
fi nd the date of last update was to download the zip or tar fi le of 
the latest installation or source fi les and look at the timestamp of 
the most recent fi le in the archive. In some cases we had to look at 
the date stamp of the PDF fi le of the manual, in others the authors 
were thorough and listed dates of release of their software on 
their website.

Of the 280 programs listed alphabetically from A-L, 23 were 
designated by Rockefeller as obsolete because they were “un-
maintained web-less or merged programs.” At the time of our 
search, we found an additional 45 that had no web link to the 
software nor could one be found with a Google search, for a 
total of 68 obsolete programs. The number of programs that had 
been updated within a year (less than 365 days) of the time of our 
assessment was only 28. Those 28 contained 5 of the 6 commercial 
programs listed among the 280. If this is a reasonable sampling 
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of genetic software, only about 9% of academic programs 
developed for genetic analysis are maintained with some form of 
update within the last year.

Given that a well-developed user interface is requisite for the 
adoption and usability of genetics packages by mainstream 
researchers, we assessed how many of the programs updated 
within the last year have a menu-based graphical user interface 
(GUI). Only six of the 23 actively maintained academic genetics 
programs had a GUI (two additional ones were form-based web 
page apps). Thus from this sampling, the estimated fraction of 
academic programs that have the potential to be highly usable 
and are well-maintained is approximately 2% (6 of 274). 
(This is probably an overestimate, as the programs making the 
Rockefeller list would over-represent the more well-known eff orts 
and under-represent less well-known programs and those that 
are abandoned soon after being created. Also, user interface 
quality is a continuum—some programs that have a GUI are still 
undocumented or in other ways diffi  cult to use.)

There are a few examples of academic software tools in the fi eld of 
genetics that have endured for years and have a broad user base. 
Generally, such eff orts tend to be platforms for the integration 
of methods from multiple authors and in many cases survive 
without a user interface. One example of this is the Bioconductor 
project which has enough of a community of contributors who 
have kept a software framework alive with no single point of 
failure. However, one needs to be an R programmer to use the 
framework.

Looking at the rule instead of the exception, why do only 2% 
of academic software programs have a GUI and get regularly 

updated? Why is all this innovation and work simply left behind? 
To understand the structural reasons for the limited academic 
software toolset, we must understand the role of mindset.

Mindset

Each individual has his/her own mindset, which I’ll defi ne as the 
amalgamation of values and mental models of reality with which 
a person engages in goal-directed behavior. The values determine 
the goals, and the mental models determine the means of moving 
towards those goals. Or to put it another way, either implicitly or 
explicitly, measurement drives behavior: our actions are directed 
to closing the measurable gaps between our goals and our present 
state. It is useful then to characterize a given culture by shared 
dimensions of mindset as embodied in its measures.

In academia, the prime metric that drives behavior at all levels, 
from the university as a whole down to the individual professor, is 
reputation. Yes, academia is about creating new knowledge; yes, it 
is about educating students; yes, it is about benefi t to society; and 
yes, it is about bringing in the revenues to support all the other 
eff orts. Cash consciousness has certainly been increasing in most 
universities in recent years, making it a close second, but at the 
end of the day, reputation is the score-keeping system. Universities 
recruit students on the strength of institutional reputation, recruit 
faculty and staff  based on reputation, and tenure is granted based 
on reputation. Grant funding goes to those with a reputation for 
past achievement, which creates a virtuous cycle of more research, 
publications, and grants to continue the process of converting 
cash into reputation. The expectations put on individuals within a 
system whose prime metric is reputation has been captured aptly 
in the cliché: “publish or perish.” Reputation is a rather intangible 
quantity, namely what your peers think of you, thus a proxy for 
reputation is the body of peer-reviewed literature a researcher has 
produced.

Impact of Mindset on the Toolset

What does this discussion of mindset and measurement mean for 
productivity? Academic researchers are measured on the quality 
and quantity of their papers, not on the quality of the toolset (such 
as the software) they produce. Given scarce time and resources, 
and given measurement drives behavior, it should be no surprise 
that only modest eff ort will be put into software quality by most 
academic researchers. While the quality of mathematical and 
algorithm innovation may be high in newly published methods, 
the power of these approaches does not get transferred into tools 
usable by the majority of researchers, and so the innovation is 
unable to be leveraged fully.

In general, a tool should be assessed on the degree to which it 
reduces the dimensionality of a complex task to simpler steps, 
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increasing both effi  ciency and eff ective capability for the user. 
When a tool can only be used by the toolmaker, its contribution to 
collective productivity is sharply diminished.

As suggested by our data collection eff orts above, the vast majority 
of academic software tools are likely to become unmaintained, 
and ultimately be relegated to the graveyard of unsupported, 
obsolete, and, fi nally, unused 
programs. The method developer 
has incentive to disseminate the 
software for others to use so that 
their methods paper will be cited. 
However, the most reputation is 
gained by having the methods 
developer also be the operator of 
the software, earning co-authorship 
on subsequent biological research 
papers. While I do not believe it 
is intentional, a pattern operates 
where the scientifi c promise of the 
freely downloadable software is 
touted in the paper, and then the 
“consumer,” due to time pressures 
and challenges of learning the 
software, programming/statistical 
skillset defi cits, and/or fear of 
improperly driving the software 
and making embarrassing 
mistakes in publications, must call 
in the software author and/or his 
students as consultants on projects 
to get the research done.

While the cause of academic 
software quality problems is 
nothing so Machiavellian as  
methods developers purposefully 
making their software hard to use just so they can obtain services 
work and get their name on publications, it is ironic to what 
degree that actually may be a productive career move. That is,  
in a system measured by reputation, it seems to be in the best 
interests of the author to make their software cryptic so users 
are dependent on them to co-author their papers. Now, I see no 
evidence of this being the case, but the main point is that writing 
user interfaces, creating extensive documentation, and providing 
tech support does not add a single publishable unit to one’s CV, 
and so is neglected in a system of “publish or perish.”

Consequences

In the long view, however, there are negative consequences 
for everyone. While successful software authors benefi t from 
coauthored journal articles that result from joint work, they 
also suff er from being inundated with tech support requests 
from non-collaborators. For this they might get gratitude and 
citation in an article, but  in general, achieve a much lower 

return in academic credit than 
other uses of their time. Also, in 
this system, bioinformaticians 
have become the constrained 
or bottleneck resource, and we 
often hear about the frustration 
research labs have with their 
dependence on bioinformaticians 
to get their data analysis done. 
Because bioinformatics is a scarce 
resource, data can sit for months 
unanalyzed, blocking the next 
step of a research program.

Perhaps even more frustrating 
is the impact of outsourcing on 
one’s learning loop. Research, 
like many goal-directed activities, 
can be represented well by the 
OODA loop model where we 
observe, orient, decide, and act, 
iteratively moving towards our 
goals. The velocity of observing 
the consequences of experiments, 
re-orienting mental models 
(mindset), making decisions, and 
acting on a new experiment sets 
the pace of research productivity. 
When an external person is 
required for us to complete the 

orient step, it is easy to see how the cycle time of the OODA loop 
can be delayed by an order of magnitude or more. This, and the 
associated loss of focus and context that occurs as researchers 
multi-task on other activities while waiting for external analysis to 
complete, is devastating to productivity.

All is not rosy for the bioinformaticians either. Despite having 
job security, they suff er from the stress of being the constrained 
resource. Further, there is also a balancing feedback loop, whereby 
the successful bioinformatician has diminishing capacity to 
develop more novel methods because their project-oriented 
work for biologists takes up more and more of their time. Thus, 
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we’ve seen an 
accelerated eff ort by 
bioinformatics cores 
in the last couple 
years to empower 
“end-users” to perform 
many of the basic 
analyses themselves 
in order to reduce the 
support burden.

Reproducible 

Research

While not immediately obvious, the consequences of the system 
on reproducible research, especially as it relates to unusable and 
unsupported academic software, are staggering. Reproducible 
research has gotten a lot of attention lately as good science rests 
upon the notion that one researcher can reproduce the approach 
and methods of another researcher and build upon or fi nd 
contradictions in the previously generated fi ndings.

Genetic research has become extremely data-driven. Great 
strides have been made in making data public through various 
repositories such as dbGaP, the Gene Expression Omnibus 
(GEO), 1000 Genomes Project web pages, and many public 
annotation databases. However, less progress has been made on 
making public the actual steps of data analysis. That is, the fully 
reconstructable audit trail of the analysis including software (and 
version), parameters, and the sequence of steps is absent, making 
the knowledge derived from the data woefully irreproducible.

If inadequate or missing documentation, lack of support on 
appropriate platforms, buggy or unstable code, and generally 
low usability are the norm for academic software, how can 
one reproduce research when the tools are unusable? Worse, 
as quantifi ed earlier, a large fraction of software tools that are 
developed and used by a researcher to produce a publication 
cease to exist within a few years. Reconstruction of the steps of 
another researcher ranges from tedious to impossible.

The current modus operandi in academia is for analysis to be done 
with a cobbled together set of command-line tools. Disparate data 
sources are stored in various places of the investigator’s hard drive 
and reproducing the analysis is problematic. When published 
analyses represent the juxtaposition of tools of unspecifi ed 
version, run with unspecifi ed parameters, and with unspecifi ed 
data cleaning and transformation steps, reproducibility by other 
researchers is severely compromised.

Over the past few years, awareness has been increasing about the 
pressing problem of reproducible research. Ioannidis (2005) has 
described some of the methodological causes leading to false 
or non-reproducible fi ndings, including small study and eff ect 
sizes, experimental design biases, multiple testing, data dredging, 
confl icts of interest, and selective reporting of results. Though 
more work has to be done, we at Golden Helix have striven to 
address many of these issues through education and training, 
with a particular focus on good experimental design and avoiding 
uncorrected multiple testing and data dredging.

Keith Baggerly has published on the need to disclose all of the data 
in publications (Baggerly 2010) and on the need to provide, as part 
of the publication process, full access to the analytical steps used 
to construct the analyses (Baggerly & Coombes 2009). Perhaps 
an instructive example is the high-profi le story of Baggerly’s 
team spending thousands of hours of investigation (Baggerly 
2010) performing “forensic bioinformatics” on Duke University 
publications purporting to have constructed a gene expression 
signature to select therapies for cancer patients. Baggerly writes:

The independent reanalysis of these signatures took so long because 
the information accompanying the associated publications was 
incomplete. Unfortunately, this is common: for example, a survey 
of 18 published microarray gene-expression analyses found that 
the results of only two were exactly reproducible. Inadequate 
information meant that 10 could not be reproduced.

While Baggerly’s team struggled to have the fl aws in the studies 
recognized by the institutions that performed them, three clinical 
trials commenced whereby potentially life-threatening decisions 
were allegedly being made on patients based on faulty analyses. 
Also, multimillion dollar venture investments had been made to 
commercialize this research. The trials are 
now halted, but there is likely to be costly 
litigation and fi nger pointing for years to 
come, eroding the trust patients have in 
their doctors, and the trust investors have 
that peer-reviewed publications can be 
counted on for commercial decisions. 

Baggerly has advocated the use of 
the Sweave (Leisch 2002) framework 
to address this problem, and the MD 
Anderson Cancer Center has mandated its 
use for their publications, which is a great step forward. Sweave 
is an overlay to the LaTeX document typesetting system that 
allows the incorporation of R statistical source code into LaTeX 

Keith Baggerly
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documents so that the analysis performed to construct graphs, 
tables, and other results for publications is preserved for posterity. 
Sweave is a good solution if analysis has been done in R, but is only 
available to programmers using that language for bioinformatics 
research.

Touching back on the discussion of mindset, consider that 
reputation as the prime metric of academia, in some ways, is 
actually inimical to reproducible research. Reputation takes 
years to build and yet can be destroyed almost overnight by one 
public faux pas. Unfortunately, despite our aspiration to consider 
mistakes as learning experiences, when they become public in a 
system of competition for reputation, those very mistakes can be 
devastating. While reproducible research is in the best interest of 
scientifi c progress of the fi eld as a whole,  for individual researchers 
to expose their work to criticism and falsifi cation exposes an 
author to the threat of lost reputation.

Nevertheless, reproducible research is essential to scientifi c 
productivity, being a cornerstone of the scientifi c method. 
Application of the scientifi c method has led to the incredible 
advances in technology and quality of life in the last century 
and more. The scientifi c method’s process of conjectures and 
refutations is like a binary search into the nature of reality, leading 
to exponential productivity and generation of knowledge. 
The demarcation between science and non-science rests on 
falsifi cation, and the scientifi c method is all about replacing false 
or incomplete hypotheses and theories about the nature of reality 
and converging to truer ones of higher explanatory and predictive 
power. That is, we form falsifi able hypotheses, do our level best as 
good scientists to refute them ourselves, and then, if unsuccessful, 
present them to a broader community for potential refutation. If a 
hypothesis stands up to all of this scrutiny, others may build upon 
it, integrating corroborated hypotheses into bodies of theories that 
provide powerful causal models as we move towards our goals. 
If reproducibility 
is inhibited, then 
refutation by our 
peers is inhibited. 
Without this selection 
process, a body of 
science becomes 
a muddled mess 
and stagnates. If we 
obstruct refutation, 
we inhibit the 
exponential engine 
of productivity that 
the scientifi c method 
provides.

Thoughts on a Solution

If productivity in our fi eld is measured not only by volume of 
publications, but also by the quality of the causal theoretical 
models for biological processes, we have a number of systemic 
and interrelated obstacles to productivity in our fi eld:

1. Bioinformatics has become the constrained resource limiting 
the pace of genetic research—there is a skillset defi cit in the 
fi eld as a whole.

2. The software toolset for genetic research, produced and 
broadly used in academia, has serious shortcomings for 
productivity. For the most part, it can only be operated well 
by the constrained resource.

3. The mindset embodied in reputation as the prime metric of 
academia reinforces the toolset defi cit.

4. The toolset and mindset inhibits the reproducibility of 
research, a cornerstone to the scientifi c method and the 
productivity that method provides us.

Of course Golden Helix sells commercial software for genetic 
analysis, and it would be convenient if we could claim just buying 
our software would solve all these problems. It won’t. Nevertheless 
the content of this article informs our own product and services 
innovation process, and we believe we have some key components 
in the direction of a solution.

Good software helps researchers overcome limits of their skillset 
in statistics and computer science and provides a visual processing 
capability to enable biologists to make sense of their data. Further, 
even for experts, it collapses complex multi-step processes into 
simpler ones, amplifying the level of abstraction and minimizing 
the drudgery of working down “in the weeds” with the data. In 
fact, some of our biggest fans are bioinformaticians who have 
spent years with command-line tools and see our user interface 
as liberating them from the heavy lifting of mundane data 
transformation tasks and keeping track of their work.

Nevertheless, there are legitimate fears we’ve heard voiced by 
some bioinformaticians; specifi cally, that it would be irresponsible 
to provide user-friendly bioinformatics software to the uninitiated. 
For certain kinds of analysis even easy-to-use software workfl ows 
are complex enough that mistakes can be made. For instance, 
associations between biomarker and phenotype may be found 
that can be explained away by confounders as a result of problems 
in experimental design or other sources of variability that even 
often experts miss. Thus, there is a signifi cant risk that a novice 
will jump to report an exciting fi nding based on an incomplete 
analysis.
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The confl ict can be formulated as whether or not to encourage a 
biologist to analyze his or her own data. The reason not to is to avoid 
embarrassing mistakes. However, almost every bioinformatician 
started off  lacking skills in either statistics, computer science, or 
biology and had to learn a domain-appropriate subset of the rest 
generally through experience and, perhaps, being paired with a 
capable mentor.

Clearly it is not viable or sustainable to divorce the biologist 
from their data. How, then, can we ease the transition, allowing 
the novice to learn by doing without making egregious errors 
in analysis? One solution is an audit function where non-
bioinformaticians analyze their own data, possibly more slowly, 
and making more mistakes, but then have their work audited by 
peers and, ultimately, a bioinformatician before publication. In the 
long run, biologists will become more self-suffi  cient on more and 
more complex analyses and enhance the productivity of the whole 
fi eld. (Additional education at the undergrad and graduate level 
would help as well.) Meanwhile, bioinformaticians will be freed up 
to work on higher level problems that engage their passion and 
skillset, stepping in to help the biologist only on truly challenging 
problems. And there will be no shortage of work anytime soon.

Still, with the aforementioned academic software toolset and 
associated reproducible research problem, it is diffi  cult for a 
bioinformatician to audit even another bioinformatician’s work. 
This could be made possible with software tools that automatically 
log all analysis steps and parameters and saves the intermediate 
steps of analysis, including graphical output, for inspection at a 
later date. Further, the ability to annotate one’s work as one might 
do in a laboratory notebook would allow an analyst (expert or 
novice) to share his or her work with a colleague for collaboration, 

review, and audit. Additionally, it would be tremendously 
benefi cial if a researcher could deposit an entire analysis project 
that documents the methods used for a publication along with 
the data in public repositories such as dbGaP. (Last year, Golden 
Helix did just this, as we assisted in depositing an Alzheimer’s 
GWAS study to dbGaP, including not only the raw data, but a full 
audit trail of quality control and association analysis.)

In fact, with bioinformaticians in short supply, Golden Helix has 
provided more and more analytical services for our customers 
over the past several years, including auditing data analysis 
results. We’ve fi ne-tuned our services process for our clients at 
various levels of engagement and found that having shared 
analysis artifacts and interactive web meetings makes for a rich 
collaboration and learning environment for both parties. We’ve 
learned through dozens of engagements that collaboratively 
defi ning a clear high level statement of work, getting a complete 
kit of all necessary data before starting a project, and adhering to 
a frequent meeting schedule with highly visual artifacts leads to 
highly engaging and educational collaborations.

What about the methods developers? Should we advocate 
they spend more time writing GUIs, providing extensive 
documentation, and performing tech support for no academic 
credit? In the current measurement system (which we do not 
propose to change—not yet, at least), it would be at the expense 
of one’s academic career to do this. Further, as has been noted in 
a recent Nature Editorial (Merali 2010), software engineering and 
developing GUIs is not a core competency in most scientifi c fi elds. 
Traditionally, one of the weaknesses of commercial off erings for 
genetic analysis is that they lag behind academic innovation. 
Unfortunately, creating a robust and highly usable product and 
supporting it takes away resources from method innovation 
(which is why academia focuses on the latter at the expense of 
the former), making companies generally less innovative than 
academia in terms of pure statistical and genetics methodology. 
This is especially true at the beginning of a new fi eld, but the 
gap closes as a fi eld matures and analysis methods standardize. 
We believe the marriage of academia and industry where each 
stands to gain on their respective prime metrics (reputation and 
revenues) is an excellent working model.

Some of the richest collaborations Golden 
Helix has had as a company have been 
integrating algorithms and command-
line tools of leading academic innovators 
into our product. Notable examples 
include the integration of the PBAT family-
based association testing package from 
Christoph Lange’s group at Harvard, 

Publish or perish

Christoph Lange
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an ongoing collaboration since 2006, 
and our recent integration of Suzanne 
Leal’s CMC (Li and Leal 2008) and KBAC 
(Liu and Leal 2010) collapsing methods 
for the analysis of rare and common 
variants. In such collaborations, we bring 
our experience in software engineering, 
human interface development, and high 
performance computing, and synergize 
them with the incredible innovations in 
statistical genetics that come from these 

researchers. The idea is for each party to do what it does best and 
be rewarded in the goal units of our respective systems. Such 
collaborations open up the opportunity for large scale educational 
events that promote these methods and their use so that the 
author gets credit and prominence. Further, the author is freed 
up from technical support, the community is educated on how to 
use the methods most eff ectively, and the software is maintained 
and sustained, contributing to scientifi c productivity for scientists 
around the world.

When you consider that reputation is the lifeblood of academia, a 
collaboration that engages the marketing resources of a company 
that actively reaches people in this niche market is a benefi t in 
and of itself. Add to that the possibility of giving an innovation 
that has a 90+% chance of obscurity the opportunity to impact 
the research productivity of hundreds, while at the same time 
generating reputation and grist for the grant mill—it seems like a 
win-win for everyone.

Conclusion

Vast opportunities for the improvement of research productivity 
exist at the leverage points of skillset, toolset, and mindset. 
By providing tools that collapse complex multidimensional 
problems into highly usable software components, we reduce 
the bioinformatics skillset needed for researchers to get their 
work done, accelerating by an order of magnitude or more the 
OODA loop of the research process by allowing biologists to 
analyze their own data with safeguards, and addressing the 
systemic bioinformatics constraint in our fi eld. We propose 
maximizing the utilization of scarce bioinformatics expertise, 
empowering bioinformaticians to work at even greater heights 
of complexity and facilitating their toolsets to be leveraged by 
mainstream researchers through commercial partnerships and/
or infrastructure. Further, by enhancing reproducible research, we 
remove obstacles to application of the exponentially productive 
scientifi c method.

Whether you are a genetic researcher or a doctor on the 
starship Enterprise, the potential for orders of magnitude more 
productivity is within your grasp—the only question is whether 
the mindset, the mental models of reality and value systems we 
hold, will allow us to embrace the necessary changes. It is my 
hope that this whitepaper has transformed your mindset in some 
small way towards considering the leverage points for enhanced 
productivity in your own research processes—just as writing it has 
transformed mine. …And that’s my two SNPs.
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“DAMMIT JIM, I’M A DOCTOR, NOT A BIOINFORMATICIAN!”
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bioinformatic roadblocks: delayed projects, lack of quality fi ndings, and low productivity. By 
empowering researchers with highly eff ective software tools, world-class support, and an array 
of complementary analytic services, we refute the notion that analysis has to be diffi  cult or time 
consuming. Golden Helix’s fl agship software product, SNP & Variation Suite (SVS), is an integrated 
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