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If you have had any experience with Golden Helix, you know 
we are not a company to shy away from a challenge. We helped 
pioneer the uncharted territory of copy number analysis with our 
optimal segmenting algorithm, and we recently hand crafted 
a version that runs on graphical processing units that you can 
install in your desktop. So it’s probably no surprise to you that 
the R&D team at Golden Helix has been keeping an eye on the 
developments of next-generation sequencing technologies. But 
what may have surprised you, as it certainly did us, was the speed 
in which these sequencing hardware platforms and services 
advanced. In a matter of a few short years, the price dropped 
and the accuracy improved to reach today’s standards where 
acquiring whole exome or whole genome sequence data for 
samples is both aff ordable and accurate.

In a three-part series, I’m going to cover the evolution of 
sequencing technologies as a research tool, the bioinformatics 
of getting raw sequence data into something you can use, and 
fi nally the challenges and unmet needs Golden Helix sees in the 
sense-making of that processed sequence data.

To start with, let’s look at the story of how we got to where we are 
today.  If you ever wondered what’s the diff erence between an 
Illumina HiSeq 2000 and a SOLiD 4hq, or why it seems that every 
six months the purported cost of whole genome sequencing is 
halved, then this story is for you.

Part 1: Evolution of sequencing 
technologies as a research tool

To start with, let’s look at the story of how we got to where we are 
today.  If you ever wondered what’s the diff erence between an 
Illumina HiSeq 2000 and a SOLiD 4hq, or why it seems that every 
six months the purported cost of whole genome sequencing is 
halved, then this story is for you.

How We Got Here

As I’m sure Frederick Sanger could tell you, DNA Sequencing is 
nothing new. He received the Nobel Prize (or half of one) for his 
technology to determine the base sequence of nucleic acids in 
1980. But it seemed that it wasn’t until ten years later, with the 
audacious pursuit of sequencing the entire human genome, that 
the real driver of innovation took hold: competition.
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With both the Human 
Genome Project and 
Celera racing to the 
fi nish line, improvements 
were made to the entire 
pipeline: from the wet 
work to the sequence 
detection hardware to 
the bioinformatics. What 
was originally expected to, 
optimistically, take fi fteen 
years was out the door in 
ten. Hot on the heels of 
these original innovators 
was a new round of start-ups mirroring the dot-com era with their 
ruthless competitiveness and speed of innovation.

First out of the gate was the venerable 454 Life Sciences, later 
acquired by Roche, with their large-scale parallel pyrosequencing 
capable of long reads of 400 to 600 bases. These read lengths 
allowed for the technology to sequence novel organisms without 
a reference genome and were able to assemble a genome de 
novo with confi dence. Although using the advances of the 
microprocessor industry in producing highly accurate small scale 
parallel components, the 454 system was still fairly expensive in 
acquiring a Gb (billion base-pairs) of sequence data.

Over a pint of beer at the local chemist’s bar near Cambridge 
University, a couple of Brits decided they could do better. In their 
informal “Beer Summit”,1 they hashed out an idea for a sequencing 
chemistry that had the potential to scale to a very cheap and high-
throughput sequencing solution. With the biochemistry skills of 
Shankar Balasubramanian and the lasers of David Klenerman, 
a massively parallel technique of reversible terminator-based 
sequencing was matured and commercialized under the funding 
of their start-up they called Solexa. With the promise of this 
potential, Solexa was purchased by U.S. based Illumina. The 
promise held out, and the 1G Genetic Analyzer released in 2006 
could sequence a personal genome for about $100,000 in three 
months.

Coming to market at the same time, but seeming to have just 
missed the wave, was the Applied Biosystems (ABI) SOLiD system 
of parallel sequencing by stepwise ligation. Similar to the Solexa 
technology of creating extremely high throughput short reads 
cheaply, SOLiD has the added advantage of reading two bases at 
a time with a fl orescent label.  Because a single base pair change 
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is refl ected in two consecutive di-base measurements, this two-
base encoding has inherent accuracy in detecting real single 
nucleotide variations versus potential sequencing errors. In a 
seemingly otherwise head-to-head competitive spec sheet with 
Illumina’s Solexa technology, the momentum of the market went 
to the company that shipped working machines out to the eager 
sequencing centers fi rst.  That prize was won by Illumina by a 
margin of nearly a year.

Drivers of the Cost Curve

With the fi erce competition to stay relevant in an exploding 
marketplace, the three “next-generation” sequencing platforms 
Roche 454, Illumina and ABI SOLiD vastly improved the throughput, 
read length, and quality of their sequencing hardware from their 
initial off erings. New companies such as Ion Torrent and Pacifi c 
Biosciences began to innovate their way into the market with new 
sequencing technology, each with their own unique advantages–
Ion Torrent with simple chemistry and inexpensive hardware and 
Pacifi c Biosciences with extremely long reads and reduced sample 
prep. These “third-generation” sequencing companies have the 
potential  to completely change the cost structure of sequencing 
by removing entire steps of chemistry or using alternatives to 
complex optical instruments. But despite the allure of the novel, 
Illumina has set the competitive bar very high with its recent 
release of the HiSeq 2000 in terms of throughput and cost per Gb 
of sequence data produced.

Alongside the technological drivers, there are two other factors I 
see that are making sequencing a viable and aff ordable research 
tool. First is the “democratization of sequencing” eff ect causing 
more sequencing machines to show up in smaller institutes, 
and second is the centralization and specialization found in the 

“sequencing as a service” business model. Let’s explore both of 
these and how they may infl uence the researcher.

Democratization of Sequencing

While larger genome institutes are snatching up the latest high 
throughput sequencing machines, their existing machines are 
often being bought by smaller institutes quite happy with the 
throughput of the previous generation of hardware. Roche is 
even building a diff erent class of product, the 454 Junior, for 
people wanting easier sample prep and less expensive machines 
without the need for as high of throughput per run. ABI is similarly 
releasing the SOLiD PI at a lower price point.

The target audience for these products are not those wanting to 
sequence whole genome or even whole exome human samples 
in their own lab, but rather people who need the fl exibility and 
turn-around time of their own sequencing machine and want 
to investigate targeted regions or organisms that do not require 
gigabases of sequence data.

This is the democratization of sequencing: the power of being able 
to run experiments that treat sequencers as glorifi ed microscopes 
or cameras, peering into the uncharted territory of certain bacteria 
or capturing the result of RNA expression experiments.

Sequencing as a Service

On the other hand, if you are interested in getting full genome or 
exome sequences of humans, you may be interested in another 
emerging trend: the centralization and growing of sequencing 
centers concerned with reducing costs by taking advantage of 
their focused expertise and economies of scale.

Despite what a sequencing platform vendor may tell you, every 
system comes with its quirks and issues. From the sample prep, 
to loading and unloading the sequencer, to monitoring and 
processing the bioinformatics pipeline, there are a lot of places 
for the process to go wrong and time and money to be wasted. 
But, on the other hand, if you take a page out of the book of 
highly effi  cient manufacturers of the 21st century, you can see 
amazing consistency and accuracy with a process of continuous 
improvement in place.

By focusing on just human whole genome or whole exome sample 
processing, you gain the expertise in providing the best quality 
data capable of the underlying technology. Complete Genomics 
has taken it one step further, building their sequencing service 
around their own unique sequencing chemistry and hardware to 

The Panton Arms where the “Beer Summit” took place
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have complete control over every step of the process. This would 
be a good place to raise the fl ag that just having an outsourced 
service provider does not eliminate the potential for batch eff ects 
and poor study design to confound your downstream analysis. 
I will talk more about this in Part 2 with the discussion of the 
analysis of sequence data.

An often undervalued part of the production of quality sequence 
data is the bioinformatics pipeline that takes the raw reads from 
the machine and does the assembly or alignment to a reference 
genome and fi nally calls the variants or diff erences between 
the consensus sequence of the sample and reference genome. 
Single purpose software tools used in the pipeline have been 
rapidly developed by the sequencing centers themselves and 
other bioinformatics researchers. Though built on these open 
source tools for the most part, the expertise and compute power 
required to run this pipeline benefi ts greatly from the economies 
of scale and specialization of the sequence service providers.

Though not immediately obvious, we can now see that both 
the democratization of sequencing and the centralization of 
sequencing through service providers each fulfi ll their own 
complementary market needs. If your research is focused on 
human samples, and you want to do large runs covering whole 
exomes or genomes, it makes sense to consider the benefi ts of 
sequencing services both in terms of price and quality.

Sequencing as a Service Sounds Good. Now What?

So you’ve determined that sequencing as a service is good way to 
go and may be wondering what you should be requesting from 
your service provider? What data should you be keeping? What 
do you need to ensure you will have the data in a format ready for 
downstream analysis?

Although you may have the option to order just the raw reads 
from sequencing service providers, we have discussed some 
reasons why it makes sense to have them run their data processing 
pipeline on the reads so they can provide you with data ready for 
downstream analysis.

In fact, the sequence alignment algorithms such as BWA have 
matured to the point where it doesn’t even make sense to keep the 
raw reads in their FASTQ format once alignment has been done. 
To allow for the easiest use of your data in downstream analysis, 
you should ask for your aligned data in the now standardized 
and effi  cient BAM fi le format and your variant calls in the near-
standardized VCF format (although variant calls in any text format 
is usually suffi  cient).

Part II: Getting raw sequence 
data into something you can use

When you think about the cost of doing genetic research, it’s no 
secret that the complexity of bioinformatics has been making 
data analysis a larger and larger portion of the total cost of a given 
project or study. With next-gen sequencing data, this reality is 
rapidly setting in. In fact, if it hasn’t already, it’s been commonly 
suggested that the total cost of storing and analyzing sequence 
data will soon be greater than the cost of obtaining the raw data 
from sequencing machines.2

Next I plan to explore, in depth, what goes into the analysis of 
sequence data and why both the cost and complexity of the 
bioinformatics should not be ignored. Whether you plan to 
send samples to a sequencing-as-a-service center, or brave the 
challenges of sequencing samples yourself, this post will help 
distinguish the fundamental diff erence in analyses by their usage 
patterns and complexity. While some bioinformatics packages 
work well in a centralized, highly tuned and continuously 
improved pipeline, others fall into a long tail of valuable but 
currently isolated tools that allow you to gain insight and results 
from your sequence data.

Breaking Down of Sequence Analysis

The bioinformatics of sequence analysis ranges from instrument 
specifi c processing of data to the fi nal aggregation of multiple 
samples into data mining and analysis tools. The software of 
sequence analysis can be categorized into the three stages of 
the data’s lifecycle: primary, secondary, and tertiary analysis. I will 
fi rst defi ne these categories in more detail and then take a look at 
where the academic and commercial tools currently in the market 
fi t into the categorization.
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Primary analysis can be defi ned as the machine specifi c steps 
needed to call base pairs and compute quality scores for those 
calls. This often results in a FASTQ fi le, which is just a combination 
of the sequence data as a string of A, C, G and T characters and an 
associated Phred quality score for each of those bases. This is the 
absolute bare minimum “raw” format you would ever expect to see 
for sequence data. While the fi rst generation of high throughput 
sequencing machines, such as the Illumina G1, allowed for 
users to provide their own alternatives to the standard primary 
analysis solution, called “the Illumina pipeline”, current generation 
machines often do this work on bundled computational hardware. 
The eff ective output of the machine is the result of the primary 
analysis. This output is ready for processing in a secondary analysis 
pipeline.

Because current sequencing technologies are generally based on 
the “shotgun” approach of chopping all the DNA up into smaller 
molecules and then generating what are referred to as “reads” 
of these small nucleotide sequences, it’s left up to secondary 

analysis to reassemble these reads to get a representation of the 
underlying biology. Before this reassembly, the “raw” reads from 
the machine are often assessed and fi ltered for quality to produce 
the best results. Reassembly diff ers if the sequencing was done on 
an organism with a polished reference genome or if the genome is 
to be assembled from scratch, also referred to as de novo assembly. 
With a reference genome available, the process is much simpler, 
as the reads simply need to be aligned to the reference, often with 
some tolerance for a few base-pair errors in the sequences of the 
reference itself.

In both the case of de novo assembly or reference sequence 
alignment, you will be shooting for a desired average depth and 
coverage of sequence reads over the entire genome or targeted 
regions of interest. Depth is a measure of how many reads cover 
a given locus of the genome. If you were to pile up the reads to 
where they were assembled or mapped (pictured above), the 

depth would be the height of this pileup at each locus. For de novo 
assembly, a higher average depth is usually needed, so that large 
contigs can be formed that are then the building blocks for a draft 
genome. In the case of sequence alignment, higher average depth 
means more certainty in the “consensus” sequence of the sample 
and more accuracy in detecting variants from the reference.

The next step in the sequence analysis process is detection of 
variants. While more customizable, and sometimes considered part 
of tertiary analysis, variant calling lends itself to being pipelined 
in the same manner as secondary analysis. Variant calling is the 
process of accurately determining the variations (or diff erences) 
between a sample and the reference genome. These may be in the 
form of single nucleotide variants, smaller insertions or deletions 
(called indels), or larger structural variants of categorizations such 
as transversions, trans-locations, and copy number variants.

Tertiary analysis diverges into a spectrum of various study 
specifi c downstream investigations. Though the research or 
building of draft genomes for novel variants will have its own 
specialized tertiary analysis after de novo assembly, I will focus on 
the more mainstream practice of “resequencing” studies where 
sequence alignment to a reference genome was used. Out of the 
secondary analysis step of variant calling, you now have a more 
manageable set of diff erences between the sequenced samples 
and the reference, but there is still an enormous amount of data to 
make sense of. This is the realm of tertiary analysis.

The Resource Requirements of Primary and 

Secondary Analysis

As  I described above, the amount of data produced by current 
generation, high throughput sequencing machines is enormous 
and continues to grow. Primary analysis solutions are largely 
provided by the platform providers as part of the machine’s 
function. Whether you run their software on bundled compute 
resources or your own cluster, the analysis is designed to keep up 
with the throughput of the machine as it produces measurement 
information, such as images of the chemistry. In contrast, secondary 
analysis performs operations on the aggregated data from one or 
more runs of the machine. As a result, secondary analysis requires 
a signifi cant amount of data storage and compute resources.

Usually quite resource intensive, secondary analysis performs a 
given set of algorithms and bioinformatics on a per-sample basis. 
This repeatable process can then be placed in an analytic pipeline 
that’s entirely automated. Such an automated pipeline allows 
for even more resource utilization through scheduling. It also 
allows for a process of continuous improvement of the pipeline 
to be employed by monitoring quality metrics and tweaking or 

Pileup from the Savant Genome Browser
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improving the algorithms and their parameters. Although these 
pipelines may be nothing more than an amalgamation of single 
purpose tools (as we will see in the next section), the economies 
of scale, not only in resource utilization but also in expertise and 
quality improvement, are realized by having secondary analysis 
centralized to a core lab or sequence-as-a-service provider.

Current Software Solutions

Over the past few years, the methods and algorithms designed for 
the primary and secondary analysis of high throughput sequence 
data have matured to satisfy the common needs of analysts. Most 
of these methods can be found in open source, single-purpose 
tools that are freely available to use and modify. In the case of 
de novo assembly, Velvet, written by Daniel Zerbino at EMBL-EBI 
uses de Bruijn graphs for genomic assembly and has set the bar 
for quality and accuracy. For sequence alignment to a reference 
genome, various Burrows-Wheeler Alignment based algorithms 
achieve a great balance of speed and accuracy. The original paper 
describing this use of the BWA algorithm3 is implemented in the 
aptly named BWA package, a successor to the gold standard, but 
slower MAQ. Other BWA implementations include bowtie and 
SOAP2.

Seemingly simple in nature, a lot of work has gone into accurate 
variant detection for resequencing data. Single Nucleotide Variant 
(SNV) detection has gone through a few generations of algorithmic 
improvements, with implementations such as SOAPsnp and GATK 
representing the current lineup. Indel detection, being a newer 
pursuit, has not had the time for a real winner to emerge. Complete 
Genomics has shown that a more holistic approach may achieve 
better results than current best practices. Finally, copy number 
and other structural variant detection are still being actively 
developed as new methods. These types of analyses require new 
ways to handle the unique properties of sequence data.

Though the above methods are often implemented in single-
purpose packages, they can be strung together to compose a 
state-of-the-art secondary analysis pipeline. This can be done 
manually with a considerable amount of IT customization, or 
through a server-oriented connector package such as Galaxy from 
Penn State. Commercial off erings in this area, such as CLC bio, 
attempt to provide an all-in-one solution for secondary analysis 
with their own proprietary tweaks on the standard algorithms, 
and a GUI for running a single sample at a time through each step.

Tertiary Analysis Requirements

After getting sequence sample data to the stage of called variants, 
the real work begins in making sense of the data in the context 
of your study. At this point, multiple samples need to be brought 

together, along with phenotype and other experimental data. 
While primary and secondary analysis can be automated and 
centralized, here in the “sense making” stage, there are a plethora 
of potential diff erent analysis techniques and exploratory paths. 
Fortunately, even whole genome sequence data processed to 
the level of variant calls is manageable on a researcher’s modern 
desktop. Whole exome or targeted resequencing is even more 
manageable.

Unlike microarray data, where the probes are usually carefully 
selected to be loci of potential interest, sequence data naturally 
contains variants regardless of their loci or functional status. As 
illustrated in the categorization of operations above, the common 
starting point in tertiary analysis then, is to use all the annotation, 
functional prediction, and population frequency data available to 
sort through this unfi ltered list. Luckily, the genetics community 
has really stepped up to the plate in both funding and sharing 
public data repositories. Population cataloging eff orts such as 
HapMap and the 1000 Genomes Project allow for studies to be 
able to determine the relative frequencies of variants in their 
samples compared to common populations. Once variants have 
been fi ltered and ranked, new methods are gaining momentum 
to handle the analysis of rare variant burden as a model of disease 
association, as well as other methods specifi c to the fi ltering and 
studying of sequence data.

Common also in the exploratory analysis of sequence data, is the 
use of a genome browser to give historical and biological context 
to your data. Like these other fi ltering and analysis methods, a 
genome browser will utilize the many repositories of genome 
annotations and public data. You may want to see if a given locus 
has had GWAS results published in the OMIM database, compare 
variants against repositories of known SNPs, or just visualize the 
genes from various gene catalogs for a given region.

As we can now see, there’s quite a bit to consider in terms of next-
gen sequencing analysis, from producing raw reads to calling 
variants to actually making sense of the data, all of which can 
add to the complexity and cost of a sequencing study. As the 
fi eld standardizes on best practices and methods for primary and 
secondary analysis, we can be more certain about planning for 
these steps and even include them in the “cost of production” of 
sequence data from either your own core lab or a “sequencing-as-
a-service” partner.

Tertiary analysis is still in its infancy but as we experienced at IGES 
and GAW this year (see our report), promising new methods and 
workfl ows are beginning to emerge.  Over the coming year, we 
are probably as excited as you are to see breakthrough discoveries 
being made with this technology. 
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Part III: “Making Sense” of all 
that data

The advances in DNA sequencing are another magnifi cent 
technological revolution that we’re all excited to be a part of. 
Similar to how the technology of microprocessors enabled the 
personalization of computers, or how the new paradigms of 
web 2.0 redefi ned how we use the internet, high-throughput 
sequencing machines are defi ning and driving a new era of 
biology.

Biologists, geneticists, clinicians, and pretty much any researcher 
with questions about our genetic code can now more aff ordably 
and capably than ever get DNA samples sequenced and processed 
in their pursuit for answers. Yes, this new-found technology 
produces unwieldy outputs of data. But thankfully, as raw data 
is processed down to just the diff erences between genomes, we 
are dealing with rich and accurate information that can easily be 
handled by researchers on their own terms.

In this fi nal section, I’m going to explore in more depth the 
workfl ows of tertiary analysis, focusing primarily on genotypic 
variants. Over the last three to four years, the scientifi c community 
has proposed a set of methods and tools for us to review as we 
explore the current landscape of solutions. So let’s examine the 
current state of sense making, how the fi eld is progressing, and 
the challenges that lay ahead.

Motivation Behind Next-Generation Sequencing

To properly discuss the methods and techniques of sequence 
analysis, we need to step back and understand the motivation 
behind using sequencing to search for genetic eff ects. We have, 
for the past fi ve years, been a very productive scientifi c community 
investigating the common disease-common variant hypothesis. 
With signifi cant Genome-Wide Association Study (GWAS) fi ndings 
for hundreds of phenotype and disease-risk traits, we should 
consider this eff ort well spent.

Genotyping microarrays have been the workhorse of GWAS study 
designs as they cheaply enable the assaying of common variants 
on thousands, and even tens of thousands, of samples. Of course, 
the more we study human populations the harder time we have 
classifying one universal defi nition of what makes a common 
variant “common.” Indeed, due to the fact that all shared variants 
were inherited from somewhere, even “rare” variants are not rare in 
some geographical locations or sub-populations. And so it follows 

that with better cataloging of population variants, more mileage 
can be had in the future with the existing GWAS study design. Even 
more interestingly, next-generation microarrays will be able to 
assay around 5 million variants, as opposed to 1-2 million with the 
Aff y SNP 6 or the Illumina HumanOmni1. Besides trying to assay 
all common variants with Minor Allele Frequencies down to 1% 
on diverse populations, new microarrays can be based on variant 
catalogs for specifi c populations or even biologically relevant 
panels such as the “MetaboChip” from Illumina.

But even with a new generation of microarrays around the corner, 
the track record for the GWAS study design has not been perfect, 
and the limited ability to assay only sets of known variants is 
being blamed as the culprit.4 The common variants identifi ed 
in association studies thus far have only accounted for a small 
portion of the heritability of complex traits studied. If complex 
diseases are driven by susceptibility alleles that are ancient 
common polymorphisms, as the common diseases-common 
variant hypothesis proposes, we should be seeing a larger portion 
of the heritability of these traits being accounted for by these 
associated polymorphisms.

The alternative hypothesis that must now be considered is that 
complex diseases are actually driven by heterogeneous collections 
of rare and more recent mutations, as with most Mendelian 
diseases! So how does one go about studying low-frequency or 
rare variants and how they contribute to genetic risk? Well, nothing 
beats the fi delity and comprehensiveness of whole-genome 
sequencing. But given that the cost of whole-genome sequencing 
may still be prohibitively expensive (though its rapidly dropping) 
for larger numbers of samples, whole exome sequencing is a good 
compromise.

Clearly getting the full set of variants provided by sequencing is 
the ideal tool, but microarrays should not be totally discounted. 
As our CEO, Dr. Christophe Lambert, explains in his post Missing 
Heritability and the Future of GWAS, there can be a productive 
pairing of next-generation sequencing with next-generation 
custom microarrays. Simply put, with the impending ability to 
customize microarrays, a small scale preliminary sequencing of 
aff ected individuals can be done to provide an enriched panel of 
rare and common variants specifi c to the disease population. The 
custom micorarrays could then be used aff ordably on a large set 
of cases and controls.

But no matter how you acquire your low frequency and rare 
variant data, you will quickly realize that the set of tools from 
the traditional GWAS study toolbox are inadequate to properly 
ascertain causal alleles and regions.
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Sequencing and Study Design

To understand how to study sequence data, we have to better 
understand the nature of rare and low frequency variants. Out of 
the secondary analysis pipeline, you can expect an average of 20K 
single nucleotide variants to be detected for a single exome. That 
relatively small number may make the analysis of those variants 
seem deceptively easy. But let’s try to place those 20K variants in 
context with some fi gures from the 1000 Genomes Project5 on the 
cataloging of variants and an article by the CDC6 on the expected 
functional implications of those variants.

  25 million unique variant sites have been identifi ed on a 
set of 629 samples

  Of those 25 million, 15 million have frequencies below 2% 
in the population

  7.9 million variants are in dbSNP 129 (closest thing to a 
database for common variants)

  You can expect roughly 4 million variants for a single 
sample at the whole-genome scale

  Around 20k will be in coding regions (exome)
  250-300 will be loss-of-function variants (biologically 

damaging) in annotated genes
  50-100 will be SNPs previously implicated in diseases

With these numbers to set perspective, the scale of the problem 
becomes apparent. How do you use the abundance of public data, 
as well as good study design, to fi lter down to causal regions of 
interest? How do you distinguish the functions of variants? How do 
you measure the combined eff ect of variants and their correlation 
with phenotypes?

First and foremost you need to start with good study design. In 
my previous post I advocated taking advantage of the centralized 
expertise and economies of scale that sequencing-as-a-service 
providers deliver for the sequencing and variant calling of your 
samples. While this still holds, a word of caution: having dealt 
with the confounding eff ects of poor study design in the analysis 
of many GWAS studies, Dr. Lambert has made a plea to take 
batch eff ects seriously when planning the logistics of assaying 
your samples. There is no reason to believe sequencing studies 
would be immune to the same eff ects as GWAS studies. So be 
sure to work with your genomic center or sequencing service 
provider to ensure proper randomization of cases, controls, and 
family members across runs. Also technical replicates should be 
considered to measure concordance of measurements across 
batches.

Besides proper randomization, there are other design level 
techniques to ensure the highest quality data for your study. Not 
surprisingly, if you have the luxury of including multiple related 
samples in your study, you can use the family structure not only to 
investigate inheritance patterns but to do extra quality checks on 
your variant calls themselves. Another neat trick is to pool the DNA 
of your cases and controls into groups, which you can then deeply 
sequence with over 100x coverage to get a highly accurate set of 
variants for your various groups.

So now, with proper study design and quality control checks in 
place, how does one go about fi nding causal variants?

Analysis of Rare Variants

With the hypothesis of susceptibility alleles being a heterogeneous 
collection of rare and low frequency alleles, the fi rst step in the 
analysis of sequence data is to categorize the relative frequency 
of your sequenced variants. If your sample set is enriched for 
the disease or trait of interest or you simply don’t have enough 
samples to attain accurate frequencies, you will want to refer to 
an external catalog such as dbSNP 129 or maybe the catalog of 
variants from the 1000 Genomes project. Note that dbSNP 129 is 
often considered the last “clean” dbSNP build without many rare 
and unconfi rmed variants from 1000 Genomes and other large 
scale projects being added.

With a classifi cation of your variants, the next step is to search for 
regions where the heterogenous burden of rare, low frequency 
and common variants is strongly correlated with the trait under 
study. Traditional association techniques used in GWAS studies do 
not have the power to detect associations with these rare variants 
individually or provide tools for measuring their compound eff ect. 
To this end, there has been a fi eld-wide development of analytic 
approaches for testing disease association with sequence data.

The fi rst round of methods focused on fi nding association 
regionally, based on accounting for the presence of at least one rare 
variant or a counting of the number of rare variants. Cohort Allelic 
Sum Test (CAST; Cohen et al.)7 was developed in 2004 to simply 
count and compare the number of individuals with one or more 
mutations in a region or gene between aff ected and unaff ected 
groups. In 2008, Li and Leal published the Combined Multivariate 
and Collapsing (CMC)8 method which similarly collapsed the rare 
variants into a single covariate that is analyzed along with all 
the common variants in the region using a multivariate analysis. 
Finally, Madsen and Browning published a method9 in 2008 
that described a weighted-sum approach that tests group-wise 
association with disease while allowing for rare variants to have 
more weight than common variants.
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The second round of rare variant analysis methods attempt to 
address a couple confounding issues. First is that not all variants, 
regardless of their rarity, are created equal. In fact, it’s possible for 
there to be both protective, neutral, and damaging variants all 
in the same gene or region being tested. While neutral variants 
generally just reduce power, they are fairly easy to fi lter out (see 
next section). The presence of both protective and damaging 
variants in the same region without knowing which is which is 
especially confounding. Using a very neat set of mathematical 
functions, called c(α), you can test for the mixture of neutral, 
risk, and protective variants. Benjamin Neale has presented on 
this approach at ASHG 2010 and other venues, but details of the 
method have not yet been published.

Suzanne Leal, the author behind the CMC method, has proposed 
an enhanced method with Dajiang Liu, which they call Kernel 
Based Adaptive Cluster (KBAC).10 This new method can account for 
other more general confounders such as age, sex, and population 
substructure in its association testing.

Almost all of these methods benefi t from having another dimension 
of variant classifi cation other than assessing its population 
frequency, and that’s inferring or predicting its functionality.

Getting More Clarity with Functional Prediction

Although we expect rare variants to be enriched for functional 
alleles (given the view that functional allelic variants are subject 
to purifying selection pressure), properly understanding and 
accounting for the functional signifi cance or insignifi cance of 
variants improves the understanding of the contribution of those 
variants. Variants come in the form of single nucleotide variants 
(SNV), and insertions and deletions (often abbreviated as “indels”). 
When SNVs occur in coding regions, they are either synonymous 
(in that they code the same amino acid) or non-synonymous. Non-
synonymous single base pair substitutions can then be classifi ed 
into missense mutations where one amino acid is replaced with 
another, nonsense mutations where an acid codon is replaced 
with a stop codon, and splice site mutations where signals for 
exon-intron splicing are created or destroyed. Small insertions or 
deletions may introduce frameshift errors by adding or removing 
nucleotides that are not a multiple of three, hence entirely 
changing the downstream amino acid coding.

Although it seems these types of mutations are easy to classify 
(besides a mutation as being missense), what we really care 
about is whether the amino acid substitution aff ects the protein 
function. Protein function prediction is a world of complexity itself 
and quickly leads to understanding entire organisms and their 
networks. Programs such as SIFT and PolyPhen2 are able make a 

decent prediction of how likely a mutation is damaged by looking 
at things like how a protein sequence has been conserved through 
evolution as a proxy to its functional importance.

If you’re trying to get a perfect picture of the functional importance 
of all your exonic variants, you’ll see it’s already tough. When you 
throw into the mix splicing mutations that alter splice sites, aff ect 
splicing enhancers, or activate cryptic splice sites, things get a bit 
tougher. When you try to account for all potential gene regulation 
sites upstream and downstream, it gets near impossible. Although 
many of these things can be worked out through carefully run lab 
experiments on a gene-by-gene basis, possibly the best we can do 
at a genome-wide scan level is to keep variants within reasonable 
distances of genes and close to splice sites in our analysis as we 
fi lter.

Along with the variant calls themselves, a secondary analysis 
pipeline usually provides quality scores and the depth of the 
pileup where a variant was called. You can use this information to 
either pre-fi lter variants to a higher quality set or investigate your 
variants in your region of interest to ensure its biological validity. 
At that level of individually confi rming variants, you may want to 
visualize the aligned sequences themselves around a variant. If 
things seem a bit wonky, doing a de novo assembly of that local 
set of reads may clean up assembly.

Other Analyses on Sequence Data

Besides trying to nail down the elusive genetic components of 
complex diseases through variant analysis, DNA sequencing is an 
excellent tool for other study types. In the case of rare penetrant 
Mendelian diseases, sequencing whole genomes of aff ected 
individuals and their families can lead to near instant success 
in discovering the causal mutations.11 The analysis is not one 
of association, but really of data-mining. Just doing set-fi lters 
between the variants of diff erent samples helps illuminate novel 
or compound heterozygous mutations in just a few, easy to follow-
up on regions.

Although small SNV and indel variants are the current focus for 
association studies with sequence data, larger structural variants 
such as copy number variants (CNV) and other inherited genomic 
features such as runs of homozygosity (ROH) can also be studied 
with whole-genome and sometimes even whole exome sequence 
data. Many methods have been proposed to tackle these tasks, 
and as sequencing becomes more aff ordable, we expect further 
focus on maturing the tools to support these studies.

Finally, outside common and rare Mendelian diseases, the quest 
for understanding the mutations driving cancer are always in need 
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of more precise and comprehensive measurements of the genome. In the variant-
abundant world of cancers, nothing beats having a whole-genome scan of your 
cancer and normal samples for comparative analysis.

Current and Future Solutions

As we have seen in our exploration, tertiary analysis is where things really open up 
to the inquisitive process researchers apply in discovering regions of importance in 
the vast genomes of their samples. For a lot of the fi ltering steps I’ve described here, 
programs such as ANNOVAR can take large lists of variants and help narrow them 
down. Although many of the collapsing and testing methods designed for this fi eld 
have been around for years, it’s hard to point to any package that allows easy use of 
them. Similarly, functional prediction and investigating variants in the context of a 
genome browser all require variant-by-variant queries to various websites.

Golden Helix hopes to open up this realm of analysis to more researchers with 
integrated and powerfully extensible tools that grow to refl ect the best of breed 
methods and workfl ows for tertiary analysis of sequence data. In the release of SNP 
and Variation Suite version 7.4, we kick off  that focus with support of many of the 
steps described here, and more to come. We hope you will be one of our collaborators 
in this exploration! 
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refute the notion that analysis has to 
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