
Is Free Software Really Free?
Examining the hidden costs of open-source bioinformatic software tools

Accelerating the Quest for Significance
2

IS FREE SOFTWARE REALLY FREE?

Background

There are many free things out there, and most people will ask,
“Why should I pay for something that I can get for free?” This is
a good question. The open-source movement has gained a lot
of momentum in the last decade. In higher education, open-
source programs such as Moodle (course management system:
www.moodle.org), Kuali (fi nancial system for academics: www.
kuali.org), and Sakai (another course management system: www.
sakaiproject.org) have gained popularity. The genetic research
fi eld is no diff erent with open-source tools such as Bioconductor
(http://www.bioconductor.org) and PLINK (http://pngu.mgh.
harvard.edu/~purcell/plink).

There are many great benefi ts to using open-source software, and
many genetic research analysis projects would not have been
completed without them. Burton Group, now a part of the Gartner
research fi rm, describes the tendency to go open-source (OSS):
“Cost is often cited as the primary motivator for using OSS. After
all, if the software is free, doesn’t that mean that [the user] saves
money?”[i]

With scientifi c research at universities dependent almost entirely
on grants, a culture of frugality and resourcefulness perpetuates.
In recent history, even fewer projects are being funded given the
National Institute of Health budget cuts. Thus, genetic researchers
live in an environment where budgets are tight, grants are limited,
and competition is fi erce.

And when a grant is obtained, there is a tendency to spend the
money on generating the data as explained by Mark Gerstein,

Executive Summary

When considering conducting genetic analysis, researchers often begin by looking at open-source tools or consider

building a program themselves. In some instances, these are the only options available. While open-source tools

are a vital and necessary component of any bioinformatics toolbox, many researchers never consider the hidden

costs of open-source software when a proprietary option is available.

In this white paper, the true cost of “free” software is explored, including time allocation, potential damage to one’s

reputation, and distraction from scientifi c discovery. Finally, fi ve questions to consider in purchasing commercial

software are discussed, as researchers weigh benefi ts and costs.

a Professor of Biomedical Informatics at Yale University:
“Historically, analysis has always been underfunded relative to
data production… Previously [researchers] saw the data as the
valuable thing and the analysis was an afterthought and easy
to do.”[ii] When new sequencing machines have price tags in the
millions, it’s easy to see why.

With no money and such an “easy” task, a common belief runs
rampant: that some graduate or post-doctoral student must be
available to handle the bioinformatics (and they are cheap, right?).
So Principal Investigators often rely on students to fi gure out
the downstream analysis, with which they have little training or
experience.

In an academic culture of self-reliance and required innovation,
the prevalence of relying on open-source code or programming a
one-off bioinformatics project from scratch seems logical.

But is “free” really free?

Jonathan Schwartz, former President of Sun Microsystems
(acquired by Oracle in 2010) characterized open-source as a “free
puppy”,[iii] i.e. the puppy may be free, but the food, veterinary bills,
and toys are costs that would not have incurred otherwise.

Open-source programs carry “hidden” costs that many researchers
never consider: time and resources, reputation, and purpose. Let’s
examine each.

Accelerating the Quest for Significance
3

IS FREE SOFTWARE REALLY FREE?

Hidden Cost 1: Time and Resources

Ask any bioinformatician what skills you should learn to go into
their fi eld, and you’re likely to get myriad answers beginning with
programming languages such as Perl, Python, R, C/C++, Java
and general familiarity with a command-line environment. Even
for those who aren’t bioinformaticians, basic genetic analysis
today requires researchers to be quasi-computer programmers.
Why? The reliance on free command-line tools that require “code
writing” skills.

Programming languages such as Perl and R are free, but they are,
of course, command-line based. Commercial software companies
generally focus on usability and intuitiveness of their products
in order to properly serve their customers. When purchasing
software, users typically have higher expectations for how easy
software is to use and learn. There is general agreement in the
industry that proprietary systems have better user interfaces.

By relying on “free,” scientists are often stuck with command-line
tools. If there is a program out there that already does what they
are looking for, a researcher can use that and not start from scratch
(although they will still have to understand the coding language
to run the analyses). If developing a new method, they may
instead decide to write a whole new program themselves instead
of investing time understanding a complex, ill-engineered code
base.

Learning a programming language is no easy task. Picking up Perl,
for example, isn’t something that can be done in an afternoon.

Learning any computer coding language takes time, eff ort, and a
lot of frustration. One case study is PhD student, Sander van der
Laan, who completed an internship at Erasmus working with data
for over 800 patients using a free, command-line tool. After six
months of trying to wrangle the data into something that could
be used for analysis, he realized the data wasn’t good enough for
reliable association results, and he had to start all over again.[iv]

James Schnable, a graduate student at University of California-
Berkeley, warns: “A large number of [grad students] will eventually
drop out. Staring at command line and struggling through
introductory books on scripting languages… isn’t how they
picture spending their time in grad school.” [v]

While the attitude of grad students being cheap labor is prevalent,
stipends paid to these students add up. A comprehensive review
of graduate school stipends found most to be between $20,000
and $30,000 a year for biological sciences.[vi]

And it only goes up from there. Genetic Researchers’ salaries
average $54,000, Professors of Genetics get a bit more at $57,000,
and Principal Investigators receive $116,000 annually.[vii] Having
researchers (or post-docs or lab personnel) learn a coding
language is costly when salaries are considered.

Often, this pain is felt most keenly when newly minted
programmers (i.e. genetic researchers) have a question. Given
the nature of open-source programs relying on their community’s
free time for support, other individuals using the program are
frequently left trying to fi gure out the answer to their question
or waiting for someone to get back to them. Documentation may
be scarce or non-existent. If these types of questions happen
frequently, a project may stall. Another outcome is when resources
(such as documentation, discussion forums, etc) don’t outline a
clear path to follow. The frustration can be overwhelming.

Program interoperability has also become a problem as many
one-off programs exist for performing one specifi c analysis,
and each program has its own data format. As high-throughput
sequencing has entered the scene, even more software—and
thus, fi le extensions—is available. Conversion has become a
nightmare as scientists start with one fi le format, change to
another, and then translate to a third. “Data management” is
now written into genetic researchers’ job descriptions, along
with all the headaches and time it requires. Once again, time and Open-source software is like a “free puppy.”

Accelerating the Quest for Significance
4

IS FREE SOFTWARE REALLY FREE?

resources are squandered on menial tasks just to get data to a
place where it can be analyzed.

And a cursory overview of genomic software shows just how
big a problem this can be. The North Shore LIJ Research Institute
maintains a comprehensive list (formerly managed by the
Rockefeller University) of over 500 genetic analysis software
packages as of August 2010, the great majority of which are free.
[viii]

However, examining the NSLIJ list reveals another problem—
software viability. In January 2011, a study of approximately half
of the packages showed that over 85% were not maintained.[ix]
In this case, after fi nally fi nding a program that can conduct the
analysis required, time now has to be spent researching whether
a project was abandoned due to problems with the software,
shifting priorities, etc. If the choice is made to use the program
anyway, all questions and modifi cations will have to be “fi gured
out” on one’s own without the help of professional support.

There is also the risk of a lab becoming dependent on a free
tool only to have it go stale when its author loses interest in
the program or has new priorities. The time spent learning and
investing in that software is wasted as researchers are forced to
fi nd a new program that is staying current with the fast-paced
fi eld of genetics.

Relying on post-docs to perform the analysis presents challenges
as well, as the constant churn of students results in duplicative

eff orts, reinventing the wheel, and the inability to reproduce
results. Not to mention, of course, the cost to train new post-docs
and get them up to speed.

On the fl ip side, researchers may publish custom one-off packages,
which they then become committed to maintaining, supporting,
and updating, requiring more time and eff ort than they originally
intended. Questions about format capability, requests for
additional functionality, and such will be a continual issue.

All the cost savings benefi ts have suddenly disappeared as
paid staff invests large amounts of time (and thus their salary)
in learning, researching, writing, converting, and supporting
command-line tools.

The idea of proprietary software and the use of resources is
summarized by Dr. Brad Wheeler (Vice President for IT, CIO, and
Professor at Indiana University) who stated at the EDUCAUSE
2008 annual conference session entitled “The Community Source
Model: Promise or Peril for Higher Ed?”:

“It would seem prudent if I can go buy [software] off the shelf,
break the plastic, and install it and only customize it a little
bit if I have to, that is a far better use of my staff time than
to take my… people and have them sit in laborious meetings
deciding [details of a new software program to be built].
Maybe that’s not a real good use of resources.”[x]

Over 85% of genetic
analysis software
programs listed by
the North Shore LIJ
Research Institute have
not been updated in
over two years.[ix]

Accelerating the Quest for Significance
5

IS FREE SOFTWARE REALLY FREE?

Hidden Cost 2: Reputation

With the reality of “publish or perish” in academia,
reputation is the measure of a scientist’s success
in the fi eld with lasting consequences such as
the ability to get tenure and receive future grant
funding. One misstep and that reputation could
be badly damaged.

What does the discussion of reputation have
to do with free software? Take the example
of Dr. Geoff rey Chang at the Scripps Research
Institute. His group used a free program supplied
by another lab for their biological analysis, but
found out later that the software had an error and
provided inaccurate results. Dr. Chang’s group
was forced to retract fi ve papers from Science, the
Journal of Molecular Biology, and Proceedings of
the National Academy of Sciences.[xi]

Professional software engineers are trained in the disciplines of
writing clean code with descriptive comments, creating detailed
documentation, and testing to make sure the software is solid and
behaves as anticipated even for edge cases. While these practices
do not guarantee perfectly accurate results, chances are much
better when they are employed.

Many scientists, on the other hand, aren’t formally trained in
computer science and may lack the necessary skills to thoroughly
test and annotate their programs. Not knowing the degree to
which a program follows programming best practices, other
scientists use the program and publish their results. As in the case
of Dr. Chang, the results may be disastrous.

John Cook, a Research Statistician at MD Anderson Cancer Center,
describes the diff erence between how scientists view software
they write versus programmers:

“To a scientist, the software is done when they get what
they want out of it, such as a table of numbers for a
paper. Professional programmers give more thought to
reproducibility, maintainability, and correctness.”[xii]

According to the Nature article, “Error... Why Scientifi c Programming
Does Not Compute” published in 2010,

“As a general rule, researchers do not test or document their
programs rigorously... It [is] almost impossible to reproduce

and verify published results generated by
scientifi c software, say computer scientists. At
best, poorly written software programs cause
researchers… to waste valuable time and energy.
But the coding problems can sometimes cause
substantial harm, and have forced some scientists
to retract papers.”[xi]

Hidden Cost 3: Purpose

Dr. Adrian Sannier, Vice President of Product
for Pearson eCollege (formerly Arizona State
University’s Vice President and University
Technology Offi cer) is passionate about buying
software. In the EDUCAUSE 2008 session with Dr.
Wheeler, he proclaims:

“I think it’s really interesting that you don’t see the CIOs of
the petroleum industry [for example] saying… ‘we really
need to be spending our talent and energy and management
building a fi nancial system [for example]’… What they are
doing instead is saying, ‘we need to get out of this business
entirely and fi nd a provider…’ That’s the model of the future.
Not writing your own code.”[x]

He concludes his statements with:

“What I want to do is make sure that we start to tackle the
problems that are really problems and get away from the
problems that [don’t matter]… Let’s get to the business of
teaching and learning.”[x]

Most genetic researchers didn’t go into their fi eld of study wanting
to write code. Applying Dr. Sannier’s comments, scientists should
focus on science and leave building tools to others. When time,
energy, and brain power are spent coding computer software, not
much is left for scientifi c theory and exploration, the areas that
scientifi c researchers excel at.

Although open-source tools have their advantages, such as the
ability for researchers to easily introduce novel methods, the
hidden costs of time and resources, reputation, and purpose make
using open-source programs for all instances questionable. Yet,
choosing proprietary software (also called “commercial software”)
has its trade-off s.

As you contemplate options, there are many things to consider.

The Science journal cover of one
of Dr. Chang’s retracted articles.

Accelerating the Quest for Significance
6

IS FREE SOFTWARE REALLY FREE?

1. Vendor lock-in

A common concern for choosing proprietary software is
becoming “locked in” to a specifi c vendor once project fi les and
results are in the vendor’s proprietary fi le format. Vendors that
require proprietary formats and other measures that lock users in
may do so based on the fear that their software cannot compete
with other products on functionality or ease-of-use. In a survey
conducted by Computer Economics in 2005, 44% of respondents
replied that the most important advantage of open-source was
“less dependence on vendors.”[xiii]

Some commercial companies have responded to this fear by
off ering the ability to import and export data from their software
into many diff erent formats, including open-source tools.
This functionality allows users to utilize other programs when
necessary while also alleviating the data management overhead
of dealing with numerous diff erent packages.

Additionally, some proprietary vendors off er a free “viewer” so that
datasets can still be viewed and exported even after you no longer
have access to the software. Having a way to view their data, even
after a vendor relationship has ended, is invaluable to researchers.
When software has extensive import and export capabilities and a
free viewer, researchers feel more freedom to use what is best for
their institution and not be “locked in” to a vendor.

2. Ability to customize

Another argument commonly made for using open-source tools
is the ability to customize the platform as desired. Seventeen
percent of Computer Economics’ survey respondents agreed that
the ease of customization was open-source software’s biggest
advantage.[xiv]

While most proprietary software code is not made public, vendors
have found other ways to allow users the ability to customize
the platform. One way is through well-documented API’s or a
scripting interface, such as Python, where researchers who desire
to do so can code custom functionality into the program. These
customizations can even be shared among the community to get
the best of open-source and commercial software combined.

3. Training and support

Upon deciding to use a new tool, training is essential to get up
and running. Open-source tools often lack any type of training
materials and lack the personnel to conduct any training. But this
is often true for proprietary software as well. Be sure to ask what
type of training a vendor provides on the software, methodology,
and applications as well as what channels it is provided through—
online tutorials, one-on-one web meetings, and in-person training.

Once a project is going, timely support can make or break a
project, given the complexity of genetic analysis. While open-
source communities can be a great resource when a user has a
question, responses rely on other users and may not be timely
or reliable. A huge benefi t to commercial software is having a
support channel. However, not all support is created equal. If a
vendor has poor support, expected benefi ts may not be realized,
and time may be wasted.

In choosing a vendor, be sure to ask:

 What are the hours for support?
 How long does it take support to respond to a user?
 How qualifi ed are the staff ?
 What ways is support off ered (phone, email, webinar, etc.)?
 What types of questions does support handle?
 What is the reputation of support at company ‘x’?

Training and support are vital to get up and running.

Five Things to Consider in Choosing Proprietary Software

Accelerating the Quest for Significance
7

IS FREE SOFTWARE REALLY FREE?

4. Frequency of updates

Open-source tools rely on the author(s) and community base
for updates, and most of the time, this software is a side project.
Updates may be scarce, and projects can go stale when an author
changes focus or fi nds something new.

However, proprietary software can also
go stale if a company’s priorities shift.
Any mature product will have regular
updates with bug fi xes and additional
features.

Given the ever-changing landscape of
genomic analysis, it is important for
researchers—and software—to stay
current. If a product is only updated once
a year or less, it can lag behind on more
powerful methods and new innovations.

5. Features

In the Burton Group report cited earlier, author Gary Hein
observes: “An underlying theme is emerging: ‘good enough.’ OSS
doesn’t have to be the best or most innovative solution; rather, it
must be good enough for the task at hand.”[i] Genetics researchers
will often release their own open-source tools once they are “good
enough”—that is, they perform the function at hand in a manner
that will suffi ce. Little concern is paid to anything beyond that.

“Good enough” is usually not “good enough” for most software
vendors. Because they are commercial organizations, time is
spent on polish, usability, and the making of a turn-key solution
for marketplace viability. A robust, end-to-end solution is the goal
and not just something that will “make do” for today.

However, when choosing proprietary software, researchers
should take care that the tool performs all functions necessary to
complete their work. Defi ning what capabilities are “must haves”
versus “nice to haves” will assist users up front when considering
software, as no package can do everything one could hope for.
If software lacks a core functionality, researchers may be stuck
using one-off tools for analyses that are not supported in their
commercial tool.

Don’t assume that just because a software vendor has released a
fi nished product that it does everything.

“Free” is a Misnomer

With the growing popularity of next-generation sequencing,
researchers will have more data than ever before to explore and
analyze. Many haven’t yet considered—how will all this data be
analyzed?

And genetic analysis isn’t easy when
using command-line tools. It isn’t
straight-forward. It can’t be taught in a
one-hour course. It can’t be explained in
a one-size-fi ts-all wizard. It can’t be given
to a green post-doc with no instructions.

In summary, academia relies on “free” as
budgets are tight and funding scarce.
This fact has led to a dependence on
command-line, open-source tools. These

tools are often a cornerstone of bioinformatics and can provide
some great benefi ts. However, there are hidden costs associated
with using these “free” tools for every project.

 Time and Resources: Staff salaries of post-docs, researchers,
and lab personnel are wasted in learning a computer-
programming language, waiting to hear back on questions
from open-source communities, managing data format
interoperability, replacing programs that no longer have a
user base, and supporting their own programs to others. Is
learning a coding language a good use of resources? What
does your time really cost?

 Reputation: Most scientists write suboptimal code. It isn’t
their fault—they aren’t trained computer programmers.
Using open-source programs that haven’t been vetted is a
gamble when publishing. Can your reputation take the hit
of a retracted article due to bad software? In a world where
reputation will make a diff erence in your position, your
funding, and your lab are you willing to take the risk with
unknown, free software?

 Purpose: Most researchers want to do research. Computer
coding takes up energy and focus that could be used on your
scientifi c purpose instead. What is your purpose as a scientist?
Does free software help you or hinder you from that purpose?

However, proprietary software is not without drawbacks either. As
researchers chose a vendor, there are fi ve questions to make sure
to keep in mind:

Accelerating the Quest for Significance
8

IS FREE SOFTWARE REALLY FREE?

1. Will you be locked into this vendor?

2. Can you customize the software?

3. How extensive is the training and support they provide?

4. How often is the software updated?

5. Does the software have the features that you require to
complete your analysis?

A fi nal thought to consider. James Schnable quoted earlier, says:
“Just because your dataset was expensive to generate doesn’t
mean you don’t have to worry about the competition stealing the
glory if you take more than a year to publish.”[v] Are you willing to
risk being “scooped?”

As the saying goes, “There’s no such thing as a free lunch.” Don’t fall
into the trap of ignoring everything but dollars and cents. “Free”
software could actually cost you much, much more.

References

[i] Hein, Gary. (2005) Open Source Software: Risk and Rewards. Burton Group.
Retrieved October 13, 2011, from http://www.immagic.com/eLibrary/
ARCHIVES/GENERAL/BURGRPUS/B050803H.pdf.

[ii] Bioinform. (2011) Q&A: Yale University’s Mark Gerstein on the Real Cost of
Sequencing. Retrieved October 17, 2011, from http://www.genomeweb.com/
informatics/qa-yale-universitys-mark-gerstein-real-cost-sequencing.

[iii] Donoghue, Andrew. (2005) Open Source ‘is free like a puppy is free’ says Sun
boss. ZDNet UK. Retrieved on October 17, 2011, from http://www.zdnet.co.uk/
news/application-development/2005/06/08/open-source-is-free-like-a-
puppy-is-free-says-sun-boss-39202713.

[iv] Vionas, Jessica. (2011) Wondering what SVS can do for a PhD student? Just ask
Sander. Our 2 SNPs… Retrieved October 21, 2011, from http://blog.goldenhelix.
com/?p=845.

[v] Schnable, James. (2011) What NOT to do with your fresh RNA-seq dataset (a
rant). James and the Giant Corn. Retrieved October 21, 2011, from http://www.
jamesandthegiantcorn.com/2011/07/13/what-not-to-do-with-your-fresh-rna-
seq-dataset-a-rant.

[vi] Chao, Wendy. (2010) America’s Best Graduate School Stipends 2009-2010
Edition. Retrieved on October 21, 2011, from http://www.wendychao.com/
science/stipends/2009-10.html.

[vii] Genetic Researcher and Professor of Genetics salary data from Simply Hired.
(2011) Retrieved October 21, 2011, from http://www.simplyhired.com.
Principal Investigators salary data from the US Bureau of Labor Statistics. (2010)
Retrieved April 25, 2012, from http://www.bls.gov/ooh/management/natural-
sciences-managers.htm.

[viii] An Alphabetic List of Genetic Analysis Software. (Last Update: October 21,
2011) North Shore LIJ Research Institute. Retrieved on October 24, 2011, from
http://linkage.rockefeller.edu/soft.

[ix] Lambert, Christophe. (2011) “Dammit Jim, I’m a doctor, not a bioinformatician!”
Our 2 SNPs… Retrieved October 24, 2011, from http://blog.goldenhelix.
com/?p=652.

[x] Wheeler, Brad and Adrian Sannier. (2008) EDUCAUSE 2008 Annual Conference.
Session: “The Community Source Model: Promise or Peril for Higher Ed?”
Retrieved on October 17, 2011, from http://hosted.mediasite.com/mediasite/
Viewer/?peid=ab4e38da501f4c3292dcff bee2a8fd92.

[xi] Merali, Zeeya. (2010) …Error … why scientifi c programming does not compute.
Nature, 467:775-777, doi:10.1038/467775a. Retrieved October 24, 2011, from
http://www.nature.com/news/2010/101013/full/467775a.html.

[xii] Cook, John D. (2011) Software Exoskeletons. The Endeavour. Retrieved October
25, 2011, from http://www.johndcook.com/blog/2011/07/21/software-
exoskeletons.

[xiii] Computer Economics. (2005) Key Advantages of Open Source is Not Cost
Savings. Retrieved on October 26, 2011, from http://www.computereconomics.
com/article.cfm?id=1043.

Additional resources:

 LinkedIn discussion. (2011) Changing to Bioinformatics. Bioinformatics Geeks
group. Retrieved on October 21, 2011, from http://www.linkedin.com/groupIte
m?view=&gid=65325&type=member&item=63720228

 Marx, Vivien. (2011) Bioinformatics Job Market Tug of War: Heavy Demand
for Data Analysis vs. Tightening Budgets. BioInform. Retrieved on October 17,
2011, from http://www.genomeweb.com/informatics/bioinformatics-job-
market-tug-war-heavy-demand-data-analysis-vs-tightening-budge.

 Trappler, Thomas. (2009) Is There Such a Thing as Free Software? The Pros and
Cons of Open-Source Software. Retrieved October 21, 2011, from http://www.
educause.edu/EDUCAUSE+Quarterly/EDUCAUSEQuarterlyMagazineVolum/
IsThereSuchaThingasFreeSoftwar/174575.

About Golden Helix
Founded in 1998, Golden Helix is known

for helping genetic research groups

working with large-scale DNA-sequencing

or microarray data overcome the

frustration and challenges of bioinformatic

roadblocks: delayed projects, lack of

quality fi ndings, and low productivity. By empowering researchers

with highly eff ective software tools, world-class support, and an

array of complementary analytic services, we refute the notion that

analysis has to be diffi cult or time consuming. Golden Helix’s fl agship

software product, SNP & Variation Suite (SVS), is an integrated

collection of powerful data management, quality assurance,

visualization, and tertiary analysis tools for genetic data. SVS is

delivered in a user-friendly, scalable platform and is supported by

a team of highly trained bioinformaticians, statistical geneticists,

and computer scientists that together make advanced statistical

and bioinformatic methods accessible to scientists of all levels.

