Sentieon DNA Pipeline for Variant Detection

Software-only solution, over 20× faster than GATK 3.3 with identical results

Jessica A. Weber¹, Rafael Aldana⁵, Brendan D. Gallagher⁵, Jeremy S. Edwards^{2,3,4}

¹Department of Biology, University of New Mexico, Albuquerque, NM. ²Department of Chemistry & Chemical Biology, University of New Mexico, Albuquerque, NM. ³Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM. ⁴Department of Chemical & Nuclear Engineering, University of New Mexico, Albuquerque, NM. ⁵Sentieon Inc., Mountain View, CA

Introduction

Recent advances in next generation sequencing (NGS) technologies have dramatically increased the rate of data output while significantly reducing costs. However, highly accurate analysis of NGS data is computationally intensive and creates a bottleneck in the overall sequencing workflow.

The current gold standard in variant calling is the Genome Analysis Toolkit (GATK)¹ Best Practice Workflow pipeline using HaplotypeCaller, which is regarded to have the highest accuracy for both single nucleotide polymorphisms (SNPs) and small insertions and deletions (indels).^{2,3} However, its slow computation speed often makes adoption challenging.

To address these challenges, the Sentieon DNA Software Package was developed to significantly decrease the analysis time and the computational resource requirements for variant detection without compromising accuracy. The result is a 20-to-50-fold increase in processing speed on the same hardware with results that are identical to the GATK pipeline, with differences within the numerical noise.

Sentieon DNA software package

The Sentieon DNA software is a package of tools used to perform ultrafast variant detection in genomic data obtained from NGS. It is designed to run on generic CPUs, without the need for specialized hardware (such as GPU, FPGAs, ASICs, etc.).

Sentieon DNA produces identical results to the GATK 3.3 pipeline with more than 20× speed improvement and includes all individual stages of the pipeline, namely: sample quality metrics calculation, duplicate read removal, indel realignment, base quality recalibration, and variant calling. The usage of Sentieon DNA is consistent with GATK and utilizes similar inputs, outputs, and parameters.

Sentieon DNA benchmarking methodology

A benchmarking comparison of Sentieon DNA and GATK 3.3 was performed using publically available genomic data from the 1000 Genomes Project (Appendix 1). The data was first mapped to the human reference genome hg19 using BWA⁴ 0.7.12 and SAMtools⁵ 1.2. The sorted.bam files were then used in two software scripts, which were created following the GATK Best Practice Workflows^{3,6} (see Appendix 2 for scripts). Each stage in GATK corresponds to a stage in Sentieon DNA, allowing for detailed, step-by-step evaluations of the two packages.

Six exome samples ranging from 3-347× coverage, and two full genome samples, with 6× and 14× coverage, were selected for the comparison of the two pipelines. The eight samples were analyzed individually using SAMtools 1.2/GATK 3.3 and Sentieon DNA 201505.02 on a 24 core, 2.4 GHz AMD Opteron 6234, 96GB memory server running Ubuntu 14.04.2 at the University of New Mexico.

Sentieon DNA is >20× faster than GATK 3.3

The runtime for the two pipelines using HaplotypeCaller variant calling was measured in core minutes. Exome runtime ranged from 108-2126 minutes for GATK 3.3 and 3-47 minutes for Sentieon DNA, while genome runtime was 2188 and 3978 minutes for GATK 3.3 and 66 and 198 minutes for Sentieon DNA (Appendix 3). Overall, Sentieon DNA provided a speed improvement over GATK 3.3 of 34-51× on the six exome samples and of 20-33× on the genome samples (Figure 1). For a comparison of UnifiedGenotyper variant calling, see Table 1 and Appendix 3.

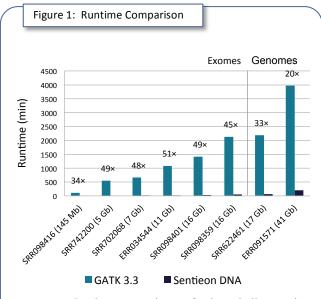


Figure 1. Runtime comparison of the pipelines using HaplotypeCaller variant calling in both software packages. Speed improvement of Sentieon DNA over GATK 3.3 is provided above each sample. Sentieon DNA runtime improvement ranges from $20-51\times$ faster than GATK.

	Fable 1: Comparison of Sentieon DNA and GATK 3.3 Variant Calls										
	Table 1. Companson of Sentieon DNA and GATK 5.5 Valiant Cans										
A. Samp		ypeCaller Type	Sequencing Coverage	Sequenced Bases	Identical Variants	Differences Caused by Downsampling	Concordance: Sentieon vs. GATK without Downsampling	Differences: Missed INDEL	Differences: Added INDEL	Differences: Missed SNP	Differences: Added SNP
SRR09	98416	Exome	3×	145M	1420	0	100.000%	0	0	0	0
SRR74	12200	Exome	102×	5G	26454	8	99.985%	2	0	1	1
SRR70	02068	Exome	140×	7G	27296	32	100.000%	0	0	0	0
ERROS	34544	Exome	251×	11G	23995	14	99.983%	0	0	3	1
SRR09	98401	Exome	341×	16G	25067	18	100.000%	0	0	0	0
SRR09	98359	Exome	347×	16G	29104	28	99.993%	0	0	0	2
SRR62	22461	Whole Genome	6×	17G	1776194	1162	99.991%	13	7	58	90
ERROS	91571	Whole Genome	14×	41G	4317568	3159	99.992%	27	23	110	188

B. Unifie	dGenotyper	Sequencing	Sequenced	Identical	Differences Caused by	Concordance: Sentieon vs. GATK without	Differences: Missed	Differences: Added	Differences:	Differences:
Sample	Туре	Coverage	Bases	Variants	Downsampling	Downsampling	INDEL	INDEL	Missed SNP	Added SNP
SRR098416	Exome	3×	145M	591	0	100.000%	0	0	0	0
SRR742200	Exome	102×	5G	33475	4	100.000%	0	0	0	0
SRR702068	Exome	140×	7G	34729	12	100.000%	0	0	0	0
ERR034544	Exome	251×	11G	29803	9	99.993%	0	1	1	0
SRR098401	Exome	341×	16G	31632	3	100.000%	0	0	0	0
SRR098359	Exome	347×	16G	36938	9	99.997%	0	1	0	0
SRR622461	Whole Genome	6×	17G	2352529	565	99.979%	112	92	141	146
ERR091571	Whole Genome	14×	41G	5341272	1180	99.981%	247	193	330	243

Sentieon DNA produces identical results to GATK 3.3

The variant calling results of the two pipelines were analyzed for concordance using the program VarSeqTM from Golden Helix. Variants with quality-by-depth smaller than 2 and depth smaller than 5 were removed from the comparisons, as were variants called outside the exome capture area in the six exome samples.

In order to decrease runtime, GATK employs downsampling in areas of high coverage, which results in run-to-run variation in the variants called (Appendix 4). Sentieon DNA, however, does not downsample and produces consistent results between runs.

To identify the number of differing variant calls between the two pipelines that can be attributed to this downsampling, the GATK 3.3 pipeline was run an additional seven times for each sample. If all eight GATK 3.3 runs did not consistently call a variant, Sentieon DNA differences in these calls were attributed to downsampling by GATK.

The VarSeqTM analyses revealed over 99.8% concordance between the GATK 3.3 and Sentieon DNA variant calls (Figure 2). After removing the variation caused by GATK downsampling, the concordance between the two software packages increased to more than 99.99% (Table 1). In total, there were less than 1 in 10,000 true differences between the GATK 3.3 and Sentieon DNA analyses, which were caused by rounding differences between the two different software paths. This level of variance is $10 \times$ less than the numerical noise caused by run-to-run variation within GATK (Appendix 4).

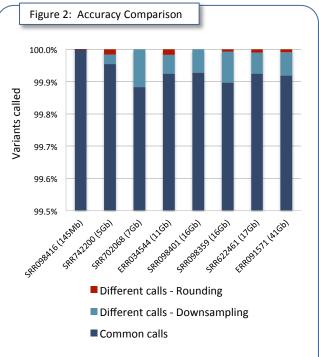


Figure 2. Concordance analysis for the variants called using the HaplotypeCaller in both software packages. Over 99.8% of the variant calls produced by GATK 3.3 and Sentieon DNA were identical. After removing the differences from GATK downsampling, the variant calls were over 99.99% concordant

Sentieon DNA run on a MacBook Pro Laptop

In addition to supporting all Linux distributions, Sentieon DNA is available for OS X versions 10.8 and above. A benchmarking comparison of Sentieon DNA for OS X was completed using the sorted.bam files from the six exome samples and the two full genome samples on a 2015 MacBook Pro laptop with a 2.8 GHz i7 processor with 8 Virtual Cores and 16GB Ram.

It was not feasible to re-analyze the samples using GATK on the laptop due to long processing times, so the MacBook Pro Sentieon DNA analyses were instead compared to the previous GATK results from the server (Figure 3, Appendix 3). Since Sentieon DNA produces consistent results with no run-to-run differences, the variants called using the MacBook Pro were identical to the results from the Linux server. Ultimately, Sentieon DNA run on the MacBook laptop outperformed GATK 3.3 on the server, providing a speed improvement of 16-26×.

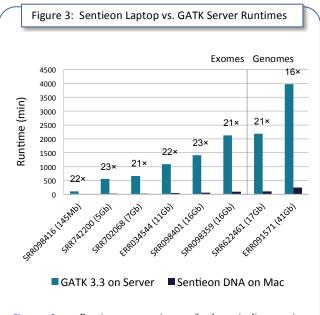


Figure 3. Runtime comparison of the pipelines using HaplotypeCaller variant calling for GATK run on the server compared to Sentieon DNA run on the MacBook. Speed improvement of Sentieon DNA over GATK 3.3 is provided above each sample. Sentieon DNA run on an 8-core laptop is >16× faster than GATK run on a 24 core server.

Conclusions

The Sentieon DNA software package for variant detection produces identical SNP and indel variant identification to GATK 3.3 at $>20\times$ the speed. Transitioning pipelines from GATK to Sentieon DNA is easy due to consistent pipeline stages and similar user interface. Thus, Sentieon DNA enables drastically higher productivity, faster turn around time, and an order of magnitude increase in effective computing power of existing systems.

References

- McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Research*. 2010;20:1297-303.
- Yi M, Zhao Y, Jia L, He M, Kebebew E, Stephens RM. Performance comparison of SNP detection tools with illumina exome sequencing data – an assessment using both family pedigree information and sample-matched SNP array data. *Nucleic Acids Research*. 2014;42(12):e101.
- Van der Auwera GA, Carneiro M, Hartl C, Poplin R, del Angel G, Levy-Moonshine A, Jordan T, Shakir K, Roazen D, Thibault J, Banks E, Garimella K, Altshuler D, Gabriel S, DePristo M. From FastQ Data to High-Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline. *Current Protocols in Bioinformatics*. 2013;43:11.10.1-11.10.33.
- Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. *Bioinformatics*. 2010;26(5):589-95.
- Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. *Bioinformatics*. 2009;25(16):2078-9.
- DePristo M, Banks E, Poplin R, Garimella K, Maguire J, Hartl C, Philippakis A, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell T, Kernytsky A, Sivachenko A, Cibulskis K, Gabriel S, Altshuler D, Daly M. A framework for variation discovery and genotyping using next-generation DNA sequencing data. *Nature Genetics*. 2011;43:491-498.

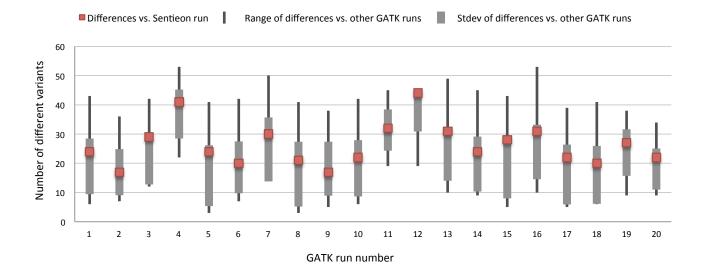
Appendix 1: 1000 Genomes samples used in benchmarking

Individual	Sample	Туре	Technology	Sequenced Bases	Sequencing Coverage	Link
NA11930	SRR098416	Exome	Illumina HiSeq	145M	3×	ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data/NA11930/sequence_read/SRR098416*
NA12046	SRR742200	Exome	Illumina HiSeq	5G	102×	ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data/NA12046/sequence_read/SRR742200*
NA12155	SRR702068	Exome	Illumina HiSeq	7G	140×	ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data/NA12155/sequence_read/SRR702068*
NA11932	ERR034544	Exome	Illumina HiSeq	11G	251×	ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data/NA11932/sequence_read/ERR034544*
NA12878	SRR098401	Exome	Illumina HiSeq	16G	341×	ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data/NA12878/sequence_read/SRR098401*
NA12891	SRR098359	Exome	Illumina HiSeq	16G	347×	ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data/NA12891/sequence_read/SRR098359*
NA12878	SRR622461	Whole Genome	Illumina HiSeq	17G	б×	ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data/NA12878/sequence_read/SRR622461*
NA12878	ERR091571	Whole Genome	Illumina HiSeq	41G	14×	ftp://ftp-trace.ncbi.nih.gov/giab/ftp/technical/NA12878_data_other_projects/sequence_read/ ERP001229/ILLUMINA/sequence_read/ERR091571*

Appendix 2: Pipeline scripts

Read Alignment (used by both pipelines) bwa mem -M -R "@RG\tID:\$group\tSM:\$sample\tPL:\$pl" -t 24 \$fasta \$fastq_1 \$fastq_2 | samtools view -Sb - >align.bam samtools sort -@ 24 align.bam sorted

	GATK 3.3	Sentieon DNA
Sample metrics calculation	java -jar picard.jar CollectAlignmentSummaryMetrics INPUT= sorted.bam OUTPUT=aln_metrics.txt REFERENCE_SEQUENCE=\$fasta2 ADAPTER_SEQUENCE=null VALIDATION_STRINGENCY=SILENT java -jar picard.jar CollectGcBiasMetrics INPUT=sorted.bam OUTPUT=gc_metrics.txt SUMMARY_OUTPUT=gc_summary.txt CHART_OUTPUT=gcbias.pdf REFERENCE_SEQUENCE=\$fasta2 ASSUME_SORTED=true VALIDATION_STRINGENCY=SILENT java -jar picard.jar MeanQualityByCycle INPUT=sorted.bam OUTPUT=mq_metrics.txt CHART_OUTPUT=meanq_cycle.pdf REFERENCE_SEQUENCE=\$fasta2 VALIDATION_STRINGENCY=SILENT PF_READS_ONLY=true java -jar picard.jar QualityScoreDistribution INPUT=sorted.bam OUTPUT=qd_metrics.txt CHART_OUTPUT=gccore_dist.pdf REFERENCE_SEQUENCE=\$fasta2 VALIDATION_STRINGENCY=SILENT PF_READS_ONLY=true java -jar picard.jar CollectInsertSizeMetrics INPUT=sorted.bam OUTPUT=qd_metrics.txt REFERENCE_SEQUENCE=\$fasta2	\$driver -r \$fasta -t 24 -i sorted.bamalgo MeanQualityByCycle mq_metrics.txtalgo QualDistribution qd_metrics.txtalgo GCBias summary gc_summary.txt gc_metrics.txtalgo AlignmentStat aln_metrics.txt algo InsertSizeMetricAlgo is_metrics.txt python \$dir/bin/ploty metrics - o metrics-report.pdf gc=gc_metrics.txt qd=qd_metrics.txt mq=mq_metrics.txt isize=is_metrics.txt
Duplicate read removal	java -jar picard.jar MarkDuplicates M=dup_reads I=sorted.bam O=dedup.bam samtools index dedup.bam	\$driver -t 24 -i sorted.bamalgo LocusCollectorfun score_info score.txt \$driver -t 24 -i sorted.bamalgo Deduprmdupscore_info score.txt deduped.bam
Indel realignment	java -jar GenomeAnalysisTK.jar -T RealignerTargetCreator -R \$fasta2 -I dedup.bam -known \$dbsnp_Mill -o realigner.intervals java -jar GenomeAnalysisTK.jar -T IndelRealigner -R \$fasta2 -I dedup.bam - known \$dbsnp_Mill -targetIntervals realigner.intervals -o realigned.bam	\$driver -r \$fasta2 -t 24 -i deduped.bamalgo Realigner -k \$dbsnp_Mill realigned.bam
Base Quality Score Recalibration	java -jar GenomeAnalysisTK.jar -T BaseRecalibrator -nct 24 -R \$fasta2 -I realigned.bam -knownSites \$dbsnp -knownSites \$dbsnp_Mill -o recal.table java -jar GenomeAnalysisTK.jar -T PrintReads -nct 24 -R \$fasta2 -I realigned.bam -BQSR recal.table -o recal.bam java -jar GenomeAnalysisTK.jar -T BaseRecalibrator -nct 24 -R \$fasta2 -I realigned.bam -knownSites \$dbsnp -knownSites \$dbsnp_Mill -BQSR recal.table -o after_recal.table java -jar GenomeAnalysisTK.jar -T AnalyzeCovariates -R \$fasta2 -before recal.table -after after_recal.table -plots recal_plots.pdf	Şdriver -r Şfasta2 -t 24 -i realigned.bamalgo QualCal -k Şdbsnp -k Şdbsnp_Mill recal_data.table Şdriver -r Şfasta2 -t 24 -i realigned.bam -q recal_data.tablealgo QualCal -k Şdbsnp -k \$dbsnp_Millpre recal_data.tablecsv recal.csv recal_data.table.post python \$dir/bin/plot.py b24qsr -o recal_plots.pdf recal.csv
Variant calling – HaplotypeCaller	java -jar GenomeAnalysisTK.jar -T HaplotypeCaller -nct 24 -R \$fasta2 -I recal.bam -o HC.vcf	\$driver -r \$fasta2 -t 24 -i realigned.bam -q recal_data.tablealgo Haplotyper output-hc.vcfalgo ReadWriter recaled.bam
Variant calling – UnifiedGenotyper	java -jar GenomeAnalysisTK.jar -T UnifiedGenotyper -nt 24 -R \$fasta2 -I recal.bam -o UG.vcf -glm BOTH	\$driver -r \$fasta2 -t 24 -i realigned.bam -q recal_data.tablealgo Genotyper output-ug.vcf


Appendix 3: Runtime data per stage (in minutes)

Sample Name	Туре	Sequenced Bases	Sequencing Coverage	Stage	Sentieon Runtime on server	GATK Runtime on server	Sentieon Runtim on MacBook
SRR098416	Exome	145M	3×	Sample metrics calculation	0.2	2.2	0.4
				Duplicate read removal	0.3	1.8	1.0
				Indel realignment	0.2	28.8	0.7
				Base Quality Score Recalibration	2.1	21.0	1.1
				Variant calling – UnifiedGenotyper	0.3	10.5	0.6
				Variant calling – HaplotypeCaller	0.5	54.5	1.7
SRR742200	Exome	5G	102×	Sample metrics calculation	0.5	14.6	1.3
				Duplicate read removal	1.3	36.3	3.1
				Indel realignment	1.5	69.2	3.1
				Base Quality Score Recalibration	2.5	219.7	4.7
				Variant calling – UnifiedGenotyper	0.7	15.2	1.5
				Variant calling – HaplotypeCaller	5.4	213.1	12.3
SRR702068	Exome	7G	140×	Sample metrics calculation	0.7	20.7	1.7
				Duplicate read removal	1.9	55.5	4.3
				Indel realignment	1.9	86.7	4.4
				Base Quality Score Recalibration	3.9	297.6	8.0
				Variant calling – UnifiedGenotyper	0.8	14.7	1.9
				Variant calling – HaplotypeCaller	5.7	204.1	12.7
ERR034544	Exome	11G	251×	Sample metrics calculation	0.9	31.7	2.6
				Duplicate read removal	2.8	81.2	7.1
				Indel realignment	3.1	123.0	7.3
				Base Quality Score Recalibration	4.5	478.3	10.2
				Variant calling – UnifiedGenotyper	1.2	18.1	2.9
				Variant calling – HaplotypeCaller	9.9	370.5	23.4
SRR098401	Exome	16G	341×	Sample metrics calculation	1.0	31.4	2.6
				Duplicate read removal	2.8	80.9	6.6
				Indel realignment	4.6	140.4	7.2
				Base Quality Score Recalibration	4.6	406.9	10.1
				Variant calling – UnifiedGenotyper	1.2	23.1	2.9
				Variant calling – HaplotypeCaller	15.7	748.7	34.6
SRR098359	Exome	16G	347×	Sample metrics calculation	1.6	56.4	4.3
				Duplicate read removal	4.9	146.1	11.6
				Indel realignment	7.9	284.5	15.9
				Base Quality Score Recalibration	8.3	727.4	18.2
				Variant calling – UnifiedGenotyper	1.8	27.5	4.5
				Variant calling – HaplotypeCaller	24.6	912.0	49.6
SRR622461	Whole Genome	17G	6×	Sample metrics calculation	1.4	46.6	3.6
				Duplicate read removal	3.9	114.0	8.9
				Indel realignment	6.9	202.5	10.9
				Base Quality Score Recalibration	7.6	748.2	15.9
				Variant calling – UnifiedGenotyper	2.0	31.5	4.4
				Variant calling – HaplotypeCaller	46.6	1076.9	64.2
RR091571	Whole Genome	41G	14×	Sample metrics calculation	3.1	111.4	7.9
	Whole Genome	-10	140	Duplicate read removal	11.0	296.9	25.7
				Indel realignment	18.0	448.6	30.0
				Base Quality Score Recalibration	15.8	1811.0	34.6
					5.2	47.8	34.6
				Variant calling – UnifiedGenotyper	3.2	47.0	11./

Appendix 4: Run to run differences in GATK due to downsampling

The run-to-run variation caused by re-running GATK 3.3 HaplotypeCaller 20 times is plotted below. Each run was compared to all other runs using the program VarSeqTM to determine the number of variants called in the run but not appearing in the other runs. The range of the variation in number of calls and the mean plus 1 standard deviation of the variation are shown. The difference between each run and the Sentieon DNA run is within the statistical variation due to the run-to-run differences.

